【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值 ;
(2)若是函數(shù)圖象上不同的三點,且,試判斷與之間的大小關(guān)系,并證明 .
【答案】(1)見解析(2)見解析
【解析】【試題分析】求函數(shù)在某一閉區(qū)間上的最值問題,基本方法是求導,研究導數(shù)的在區(qū)間上的正負,得出函數(shù)在區(qū)間上的單調(diào)性,求極值和最值,本題關(guān)鍵是含有參數(shù),所以針對的不同情況,進行討論得出最值;第二步先表示出及,然后差值比較,重要的一個技巧是設 ,轉(zhuǎn)化為關(guān)于 的函數(shù),利用導數(shù)證明不等式.
(1) ,
當時, 時, ;
當時, 時, ;
當時,由,得,又,則有如下分類 :
①當,即時, 在上是增函數(shù) ,所以;②當,即時, 在上是增函數(shù) ,在上是減函數(shù) ,所以;③當,即時, 在上是減函數(shù) ,所以,綜上,函數(shù)在上的最大值為.
(2)
, ,
,令,所以在上是增函數(shù) ,又,當時, ,故;當時, ,故,綜上知: .
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)), 求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知θ為向量 與 的夾角,| |=2,| |=1,關(guān)于x的一元二次方程x2﹣| |x+ =0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+ )的最值及對應的θ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2 + sinωx﹣ (ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是( )
A.(0, ]
B.(0, ]∪[ ,1)
C.(0, ]
D.(0, ]∪[ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先將函數(shù)y=f(x)的圖象向左平移 個單位,然后再將所得圖象上所有點的縱坐標不變,橫坐標伸長到原來的2倍,最后再將所得圖象向上平移1個單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點M( ,2)對稱,求函數(shù)y=g(x)在[0, ]上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義某種運算S=ab,運算原理如圖所示,則式子[(2tan )lg ]+[lne( )﹣1]的值為( )
A.4
B.8
C.10
D.13
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, , 是上的動點, .
(Ⅰ)若點是中點,證明:平面平面;
(Ⅱ)判斷點到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設每天的銷售量相互獨立.
(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標準方程.
查看答案和解析>>