(08年北京卷理)(本小題共14分)
如圖,在三棱錐中,,,,.
(Ⅰ)求證:;
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
【標(biāo)準(zhǔn)答案】: 解法一:
(Ⅰ)取中點(diǎn),連結(jié).
, .
, .
, 平面.
平面, .
(Ⅱ),,
.
又, .
又,即,且,
平面.
取中點(diǎn).連結(jié).
,.
是在平面內(nèi)的射影,
.
是二面角的平面角.
在中,,,,
.
二面角的大小為.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
過作,垂足為.
平面平面,
平面.
的長即為點(diǎn)到平面的距離.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
點(diǎn)到平面的距離為.
解法二:
(Ⅰ),, .
又, .
, 平面.
平面,
.
(Ⅱ)如圖,
以為原點(diǎn)建立空間直角坐標(biāo)系.
則.
設(shè).
,
,.
取中點(diǎn),連結(jié).
,,
,.
是二面角的平面角.
,,,
.
二面角的大小為.
(Ⅲ),
在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
, 點(diǎn)的坐標(biāo)為.
.
點(diǎn)到平面的距離為.
【高考考點(diǎn)】: 直線與直線的垂直,二面角,點(diǎn)面距離
【易錯提醒】: 二面角的平面角找不到,求點(diǎn)面距離的方法單一
【備考提示】: 找二面角的方法大致有十種左右,常見的也有五六種,希望能夠全面掌握。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷理)(本小題共14分)
已知菱形的頂點(diǎn)在橢圓上,對角線所在直線的斜率為1.
(Ⅰ)當(dāng)直線過點(diǎn)時,求直線的方程;
(Ⅱ)當(dāng)時,求菱形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷理)(本小題共13分)
甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率。
(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷理)過直線上的一點(diǎn)作圓的兩條切線,當(dāng)直線關(guān)于對稱時,它們之間的夾角為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com