已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2.P是橢圓上一點,△PF1F2是以PF1為底邊的等腰三角形,若0°<∠PF1F2<60°則該橢圓的離心率的取值范圍是
 
分析:由題意可得 PF2=F1F2=2c,再由橢圓的定義可得 PF1 =2a-2c.設(shè)∠PF2F1 =θ,則
π
3
<θ<π,故-1<cosθ<
1
2
,再由cosθ=
2ac+c2-a2
2c2
,求得e的范圍.
解答:解:由題意可得 PF2=F1F2=2c,再由橢圓的定義可得 PF1 =2a-PF2=2a-2c.
設(shè)∠PF2F1 =θ,則  
π
3
<θ<π,∴-1<cosθ<
1
2

△PF1F2中,由余弦定理可得  cosθ=
2ac+c2-a2
2c2
,由-1<cosθ 可得 3e2+2e-1>0,e>
1
3

由cosθ<
1
2
 可得 2ac<a2,e=
c
a
1
2
.綜上,
1
3
<e<
1
2
,
故答案為 (
1
3
,
1
2
).
點評:本題考查橢圓的定義、標準方程,以及簡單性質(zhì)的應(yīng)用,得到cosθ=
2ac+c2-a2
2c2
,且-1<cosθ<
1
2
,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習冊答案