8.《九章算術》是我國古代內容極為豐富的一部數(shù)學專著,書中有如下問題:今有女子善織,日增等尺,七日織28尺,第二日,第五日,第八日所織之和為15尺,則第九日所織尺數(shù)為(  )
A.8B.9C.10D.11

分析 由題意可知,每日所織數(shù)量構成等差數(shù)列,再由已知求得a5,a4的值,進一步求得公差,代入等差數(shù)列的通項公式求得第九日所織尺數(shù).

解答 解:由題意可知,每日所織數(shù)量構成等差數(shù)列,且a2+a5+a8=15,S7=28,
設公差為d,由a2+a5+a8=15,得3a5=15,∴a5=5,
由S7=28,得7a4=28,∴a4=4,則d=a5-a4=1,
∴a9=a5+4d=5+4×1=9.
故選:B.

點評 本題考查等差數(shù)列的通項公式,考查了上廁所了的前n項和,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合P={x|x2-(3a+2)x+(2a+1)(a+1)≤0},Q={x|x2-3x≤10}.
(1)若a=3,求(∁RP)∩Q;
(2)若P⊆Q,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知{an}是一個等差數(shù)列,且a2=1,a5=-5
(1)求數(shù)列{an}的通項an;    
(2)若{an}前n項和Sn>0,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=x2-2tx-4t-4,g(x)=$\frac{1}{x}$-(t+2)2,兩個函數(shù)圖象的公切線恰為3條,則實數(shù)t的取值范圍為($\frac{3\root{3}{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA=(2c+a)cos(C+A)•
(I)求角B的大;
( II)若b=4,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出下列四種說法:
①函數(shù)y=ax(a>0,且a≠1)與函數(shù)y=log1ax(a>0,且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$與y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在(0,+∞)上都是增函數(shù).
其中正確說法的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2.若橢圓上存在點P使∠F1PF2=90°.則橢圓的離心率的取值范圍是$\frac{\sqrt{2}}{2}$≤e<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知a,b為正實數(shù),向量$\overrightarrow{m}$=(a,4),向量$\overrightarrow{n}$=(b,b-1),若$\overrightarrow{m}$∥$\overrightarrow{n}$,則a+b最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知△ABC的面積為S,且$\overrightarrow{BA}•\overrightarrow{CA}=S$.
(1)求tanA的值;
(2)若B=$\frac{π}{4},c=6$,求△ABC的面積S.

查看答案和解析>>

同步練習冊答案