已知函數(shù)f(x)=
x2+ax+b
x
(x≠0)
是奇函數(shù),且滿足f(1)=f(4)
(Ⅰ)求實數(shù)a、b的值; 
(Ⅱ)試證明函數(shù)f(x)在區(qū)間(0,2]單調(diào)遞減,在區(qū)間(2,+∞)單調(diào)遞增;
(Ⅲ)是否存在實數(shù)k同時滿足以下兩個條件:
①不等式f(x)+
k
2
>0
對x∈(0,+∞)恒成立;
②方程f(x)=k在x∈[-6,-1]上有解.若存在,試求出實數(shù)k的取值范圍,若不存在,請說明理由.
分析:(Ⅰ)先根據(jù)f(1)=f(4)求出b的值;再結(jié)合f(x)+f(-x)=0對x≠0恒成立求出a的值即可;
(Ⅱ)直接按照單調(diào)性的證明過程來證即可;
(Ⅲ)先結(jié)合第二問的結(jié)論知道函數(shù)f(x)在(0,+∞)上有最小值f(2)=4以及可知函數(shù)f(x)在(-∞,-2)上遞增,在[-2,0)上遞減;對于①;轉(zhuǎn)化為f(x)min>-
k
2
;對于②轉(zhuǎn)化為求函數(shù)的值域問題即可;最后把兩個成立的范圍相結(jié)合即可求出結(jié)論.
解答:解:(Ⅰ) 由f(1)=f(4)得1+a+b=
16+4a+b
4
,解得b=4.  …(1分)
f(x)=
x2+ax+b
x
(x≠0)
為奇函數(shù),得f(x)+f(-x)=0對x≠0恒成立,
x2+ax+b
x
+
x2-ax+b
-x
=2a=0
,所以a=0.  …(3分)
(Ⅱ)由(Ⅰ)知,f(x)=x+
4
x

任取x1,x2∈(0,2],且x1<x2,f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=(x1-x2)
x1x2-4
x1x2
,…(5分)
∵0<x1<x2≤2,∴x1-x2<0,x1x2>0,x1x2-4<0,
∴f(x1)-f(x2)>0,f(x1)>f(x2),
所以,函數(shù)f(x)在區(qū)間(0,2]單調(diào)遞減.  …(7分)
類似地,可證f(x)在區(qū)間(2,+∞)單調(diào)遞增.  …(8分)
(Ⅲ)對于條件①,由(Ⅱ)得函數(shù)f(x)在(0,+∞)上有最小值f(2)=4,
故若f(x)+
k
2
>0
對x∈(0,+∞)恒成立,
則需f(x)min>-
k
2
,則4>-
k
2
,
∴k>-8;
對于條件②,由(Ⅱ)可知函數(shù)f(x)在(-∞,-2)上遞增,在[-2,0)上遞減,
∴函數(shù)f(x)在[-6,-2]上遞增,在[-2,0)上遞減,
又f(-6)=-
20
3
,f(-2)=-4,f(-1)=-5,
所以函數(shù)f(x)在[-6,-1]上的值域為[-
20
3
,-4],
若方程f(x)=k在[-6,-1]上有解,則需-
20
3
k≤-4,
若同時滿足條件①②,則需
k>-8
-
20
3
≤ k≤-4

所以:-
20
3
≤k≤-4.
故當(dāng)-
20
3
≤k≤-4時,條件①②同時滿足.
點評:本題主要考察函數(shù)奇偶性與單調(diào)性的綜合.解決第一問的關(guān)鍵在于利用奇函數(shù)的定義得到f(x)+f(-x)=0對x≠0恒成立求出a的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案