設(shè)A={(x,y)|1≤x≤6,1≤y≤6,x,y∈N*}
(1)求從A中任取一個(gè)元素是(1,2)的概率;
(2)從A中任取一個(gè)元素,求x+y≥10的概率
(3)設(shè)η為隨機(jī)變量,η=x+y,求Eη.
(2)設(shè)從A中任取一個(gè)元素,x+y≥10的事件為C,有(4,6)(6,4)(5,5)(5,6)(6,5)(6,6)
分析:(1)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是36,滿足條件的事件是從A中任取一個(gè)元素是(1,2)有一個(gè)基本事件,根據(jù)古典概型概率公式得到結(jié)果.
(2)由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)36,滿足條件的事件可以通過(guò)列舉得到共有6個(gè),根據(jù)古典概型概率公式得到結(jié)果.
(3)由題意知Y可能取的值為2,3,4,5,6,7,8,9,10,11,12.結(jié)合變量對(duì)應(yīng)的事件和古典概型的公式概率,得到分布列,算出期望.
解答:解:(1)設(shè)從A中任取一個(gè)元素是(1,2)的事件為BP(B)=
1
36

所以從A中任取一個(gè)元素是(1,2)的概率為
1
36
.…(3分)
(2)設(shè)從A中任取一個(gè)元素,x+y≥10的事件為C,有
(4,6)(6,4)(5,5)(5,6)(6,5)(6,6)P(C)=
1
6

所以從A中任取一個(gè)元素x+y≥10的概率為
1
6
…(6分)
(3)η可能取的值2,3,4,5,6,7,8,9,10,11,12…(8分)
p(η=2)=
1
36
,p(η=3)=
2
36
,p(η=4)=
3
36
,p(η=5)=
4
36
,p(η=6)=
5
36

p(η=7)=
6
36
,p(η=8)=
5
36
,p(η=9)=
4
36
,p(η=10)=
3
36
,p(η=11)=
2
36
,
p(η=12)=
1
36

Eη=2×
1
36
+3×
2
36
+4×
3
36
+5×
4
36
+6×
5
36
+7×
6
36
+8×
5
36
+9×
4
36
+10×
3
36
+11×
2
36
+12×
1
36
=7
…(12分)
點(diǎn)評(píng):本題是一個(gè)古典概型問(wèn)題,這種問(wèn)題在高考時(shí)可以作為一道解答題,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題可以列舉出所有事件,是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b).是從集合A到集合B的映射,若B中元素(6,2)在映射f下對(duì)應(yīng)A中元素(3,1),求k,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知M{1}N{1,2},設(shè)A{xy)|xM,yN},B{xy)|xN,       yM},求AB,AB.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)A{x,y)|y=-4x6}B{x,y)|y5x3},求A∩B.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)A{x,y)|3x2y1}B{x,y)|xy2},C{x,y)|2x2y3}D{x,y)|6x4y2},求AB、BCA∩D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b).是從集合A到集合B的映射,若B中元素(6,2)在映射f下對(duì)應(yīng)A中元素(3,1),求k,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案