已知A、B、C是△ABC的三個內(nèi)角,A是銳角,向量=(1,),=(,sinA),且
(1)求角A;
(2)若AC=1且△ABC的面積為,求BC的值.
【答案】分析:(1)由結(jié)合向量平行的充要條件,列出關(guān)于角A的方程,解之即可得到角A的大小;
(2)根據(jù)三角形的面積正弦定理公式,結(jié)合已知條件列方程,解之即可得到AB邊的長,再用余弦定理列式,即可得到BC的大。
解答:解:(1)∵向量=(1,),=(,sinA),且
∴1×sinA-×=0,解得sinA=
∵A是銳角,∴A=
(2)∵AC=1,A=,△ABC的面積為
×AC×AB×sin=,即×1×AB×=
解之得,AB=4
根據(jù)余弦定理,得BC==
點評:本題給出三角形中A為銳角,在已知向量平行的條件下求角A的大小并解決與面積有關(guān)的問題,著重考查了向量平行的充要條件和利用正余弦定理解三角形的知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3、已知a,b,c是三條不同的直線,α,β,γ是三個不同的平面,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上的三點,向量
OA
OB
、
OC
滿足
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
o
,(O不在直線l上a>0)
(1)求y=f(x)的表達式;
(2)若函數(shù)f(x)在[1,∞]上為增函數(shù),求a的范圍;
(3)當a=1時,求證lnn>
1
2
+
1
3
+
1
4
+…+
1
n
,對n≥2的正整數(shù)n成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c是直角三角形的三邊,其中c為斜邊,若實數(shù)M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,則實數(shù)M的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知A、B、C是銳角△ABC的三個內(nèi)角,內(nèi)量p=(1+sinA,1+cosA),q=(1+sinB,-1-cosB),則p與q的夾角是


  1. A.
    銳角
  2. B.
    鈍角
  3. C.
    直角
  4. D.
    不確定

查看答案和解析>>

科目:高中數(shù)學 來源:0119 期末題 題型:單選題

已知a、b、c是直線,α、β是平面,給出下列五種說法:
①若a⊥b,b⊥c,則a∥c;   ②若a∥b,b⊥c,則a⊥c;
③若a∥β,bβ,則a∥b; ④若a與b異面,且a∥β,則b與β相交;
⑤若a∥c,α∥β,a⊥α,則c⊥β。
其中正確說法的個數(shù)是

[     ]

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案