(從22/23/24三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分. 請(qǐng)將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于,兩點(diǎn),求M,N兩點(diǎn)間的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽一模)一般來說,一個(gè)人腳掌越長(zhǎng),他的身高就越高.現(xiàn)對(duì)10名成年人的腳掌長(zhǎng)x與身高y進(jìn)行測(cè)量,得到數(shù)據(jù)(單位均為cm)作為一個(gè)樣本如上表示.
腳掌長(zhǎng)(x) 20 21 22 23 24 25 26 27 28 29
身高(y) 141 146 154 160 169 176 181 188 197 203
(1)在上表數(shù)據(jù)中,以“腳掌長(zhǎng)”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長(zhǎng)”之間的線性回歸方程
y
=bx+a;
(2)若某人的腳掌長(zhǎng)為26.5cm,試估計(jì)此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人作進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數(shù)據(jù):
10
i=1
(xi-
.
x
)(yi-
.
y
)=577.5
,
10
i=1
(xi-
.
x
)
2
=82.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

一般來說,一個(gè)人腳掌越長(zhǎng),他的身高就越高.現(xiàn)對(duì)10名成年人的腳掌長(zhǎng)與身高進(jìn)行測(cè)量,得到數(shù)據(jù)(單位均為)作為一個(gè)樣本如上表示.

腳掌長(zhǎng)(x)

20

21

22

23

24

25

26

27

28

29

身高(y)

141

146

154

160

169

176

181

188

197

203

(1)在上表數(shù)據(jù)中,以“腳掌長(zhǎng)”為橫坐標(biāo),“身高”為縱坐標(biāo),做出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長(zhǎng)”之間的線性回歸方程;

(2)若某人的腳掌長(zhǎng)為,試估計(jì)此人的身高;

(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人作進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率. (參考數(shù)據(jù):)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省?谑懈呖颊{(diào)研考試數(shù)學(xué)(理) 題型:解答題

(從22/23/24三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分. 請(qǐng)將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—5:不等式選講
設(shè)函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若不等式的解集是非空的集合,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年海南省?谑懈呖颊{(diào)研考試數(shù)學(xué)(理) 題型:解答題

(從22/23/24三道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分. 請(qǐng)將答題的過程寫在答題卷中指定的位置)(本小題滿分10分)選修4—1:幾何證明選講
如圖,已知的直徑,上兩點(diǎn),,,交,

(Ⅰ)求證:的中點(diǎn);
(Ⅱ)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案