如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是線段EF的中點(diǎn).

求證:(1)AM∥平面BDE;

(2)AM⊥平面BDF.

 

1)見解析(2)見解析

【解析】(1)建立如圖所示的空間直角坐標(biāo)系,設(shè)AC∩BDN,連結(jié)NE.

N,E(0,0,1),A(,0),M.

,.

NEAM不共線.∴NE∥AM.

NE?平面BDE,AM平面BDE,AM平面BDE.

(2)(1),

D(0,0),F(,,1)(0,,1),

·0,AMDF.同理AM⊥BF.DF∩BFF,AM平面BDF.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

某種產(chǎn)品按下列三種方案兩次提價(jià).方案甲:第一次提價(jià)p%,第二次提價(jià)q%;方案乙:第一次提價(jià)q%,第二次提價(jià)p%;方案丙:第一次提價(jià)%第二次提價(jià)%.其中p>q>0,上述三種方案中提價(jià)最多的是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:解答題

解關(guān)于x的不等式(1ax)2<1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖甲在平面四邊形ABCD,已知∠A45°,∠C90°,∠ADC105°,ABBD,現(xiàn)將四邊形ABCD沿BD折起,使平ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱ACAD的中點(diǎn).

(1)求證:DC⊥平面ABC;

(2)BF與平面ABC所成角的正弦值;

(3)求二面角BEFA的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

若平面α的一個(gè)法向量為n(4,11),直線l的一個(gè)方向向量為a(2,3,3),lα所成角的正弦值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

已知l∥α,l的方向向量為(2m,1),平面α的法向量為,m________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,四棱錐P-ABCDPA底面ABCD,ABAD點(diǎn)E在線段AD,CE∥AB.

(1)求證:CE⊥平面PAD

(2)PAAB1,AD3,CD,∠CDA45°,求四棱錐P-ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖AB、CD均為圓O的直徑,CEO所在的平面,BFCE.求證:

(1)平面BCEF⊥平面ACE;

(2)直線DF∥平面ACE.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

正三棱柱ABCA1B1C1,已知ABA1A,DC1C的中點(diǎn),OA1BAB1的交點(diǎn).

(1)求證:AB1平面A1BD

(2)若點(diǎn)EAO的中點(diǎn),求證:EC∥平面A1BD.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案