分析 由已知點(diǎn)的坐標(biāo)求出向量$\overrightarrow{CA}、\overrightarrow{CB}$的坐標(biāo),然后代入數(shù)量積公式求得<$\overrightarrow{CA}$,$\overrightarrow{CB}$>.
解答 解:∵點(diǎn)A($\sqrt{3}+1$,1),B(1,1),C(1,2),
∴$\overrightarrow{CA}=(\sqrt{3},-1),\overrightarrow{CB}=(0,-1)$,
則cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{|\overrightarrow{CA}|•|\overrightarrow{CB}|}$=$\frac{-1×(-1)}{\sqrt{(\sqrt{3})^{2}+(-1)^{2}}×1}=\frac{1}{2}$.
∵<$\overrightarrow{CA}$,$\overrightarrow{CB}$>∈[0,π],
∴<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了數(shù)量積求向量的夾角,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1+ln3}{3}$) | B. | ($\frac{1}{2}$,$\frac{1+ln3}{3}$] | C. | ($\frac{1+ln3}{3}$,1) | D. | [$\frac{1+ln3}{3}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com