已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an.

如果在一種算法中,計算x0k(k=2,3,4,…,n)的值需要k-1次乘法,計算P3(x0)的值共需要9次運算(6次乘法,3次加法),那么計算P10(x0)的值共需要_________________次運算.

下面給出一種減少運算次數(shù)的算法:

P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1),利用該算法,計算P3(x0)的值共需要6次運算,計算P10(x0)的值共需要______________________次運算.

解析:計算P3(x0)=a0x03+a1x02+a2x0+a3,

其中x0k需k-1次乘法,

∴an-k·x0k共需k次乘法.

上式中運算為3+2+1=6次,另外還有3次加法,共9次.

由此產生規(guī)律:當計算P10(x0)時,有P10(x0)=a0x010+a1x09+…+a10

計算次數(shù)為10+9+8+…+1+10=+10=65次.

第2問中需注意

P3(x0)=x·P2(x0)+a3,

P2(x0)=x·P1(x0)+a2,

P1(x0)=x·P0(x0)+a1.

顯然P0(x0)為常數(shù)不需計算.

∴計算為每次一個乘運算一個加運算共3×2=6次.

由此運用不完全歸納法知

P10(x0)=x·P9(x0)+x10,

P9(x0)=x·P8(x0)+a9,

…,

P1(x0)=x·P0(x0)+a1.

其中共有10×2=20個運算過程

答案:65  20

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an
如果在一種算法中,計算x0k(k=2,3,4,…,n)的值需要k-1次乘法,計算P3(x0)的值共需要9次運算(6次乘法,3次加法),那么計算Pn(x0)的值共需要
 
次運算.
下面給出一種減少運算次數(shù)的算法:P0(x0)=a0.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用該算法,計算P3(x0)的值共需要6次運算,計算Pn(x0)的值共需要
 
次運算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an.如果在一種算法中,計算
x
k
0
(k=2,3,4,…,n)
的值需要k-1次乘法,計算P3(x0)的值至多需要9次運算(6次乘法,3次加法),那么計算P10(x0)的值至多需要
65
65
次運算.下面給出一種減少運算次數(shù)的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用該算法,計算P3(x0)的值至多需要6次運算,計算P10(x0)的值至多需要
20
20
次運算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an,如果在一種計算中,計算x0k(k=2,3,4,…,n)的值需k-1次乘法.計算p3(x0)的值共需9次運算(6次乘法,3次加法)那么計算Pn(x0)的值共需
1
2
n(n+3)
1
2
n(n+3)
次運算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an.

    如果在一種運算中,計算x0k(k=2,3,4,…,n)的值需要k-1次乘法,計算P3(x0)的值共需要9次運算(6次乘法,3次加法),那么計算Pn(x0)的值共需___________次運算.

    下面給出一種減法運算:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用該算法,計算P3(x0)的值共需6次運算,計算Pn(x0)的值共需__________-次運算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n次多項式Pn(x)=a0xn+a1xn-1+…+an-1x+an,如果在一種算法中,計算x0k(k=2,3,4,…,n)的值需要k-1次乘法,計算P3(x0)的值共需要9次運算(6次乘法,3次加法),那么計算P10(x0)的值共需要___________次運算.

下面給出一種減少運算次數(shù)的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0, 1,2,…,n-1).利用該算法,計算P3(x0)的值共需要6次運算,計算P10(x0)的值共需要______________次運算.

查看答案和解析>>

同步練習冊答案