中心在原點(diǎn)且離心率為的雙曲線方程是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的中心在原點(diǎn),離心率為
4
5
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為10.過雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦點(diǎn)F2作垂直于x軸的直線交雙曲線C2于M、N兩點(diǎn).
(I)求橢圓C1的標(biāo)準(zhǔn)方程;
(II)若雙曲線C2與橢圓C1有公共的焦點(diǎn),且以MN為直徑的圓恰好過雙曲線的左頂點(diǎn)A,求雙曲線C2的標(biāo)準(zhǔn)方程;
(III)若以MN為直徑的圓與雙曲線C2的左支有交點(diǎn),求雙曲線C2的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A組:直角坐標(biāo)系xoy中,已知中心在原點(diǎn),離心率為
1
2
的橢圓E的一個(gè)焦點(diǎn)為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為
1
2
的直線l1,l2.當(dāng)直線l1,l2都與圓C相切時(shí),求P的坐標(biāo).
B組:如圖,在平面直角坐標(biāo)系xoy中,橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).已知點(diǎn)(1,e)和(e,
3
2
)
都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設(shè)A,B是橢圓上位于x軸上方的兩點(diǎn),且直線AF1與直線BF2平行,AF2與BF1交于點(diǎn)P,若AF1-BF2=
6
2
,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M的中心在原點(diǎn),離心率為
1
2
,左焦點(diǎn)是F1(-2,0).
(1)求橢圓的方程;
(2)設(shè)P是橢圓M上的一點(diǎn),且點(diǎn)P與橢圓M的兩個(gè)焦點(diǎn)F1、F2構(gòu)成一個(gè)直角三角形,若PF1>PF2,求
PF1
PF2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)F(-2,0)
①求雙曲線方程
②設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若|
MQ
|=2|
QF
|
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案