已知a2+b2=2,若a+b≤|x+1|-|x-2|對(duì)任意實(shí)數(shù)a、b恒成立,則x的取值范圍是
[
3
2
,+∞
[
3
2
,+∞
分析:由已知,只需|x+1|-|x-2|大于等于a+b的最大值即可,利用三角換元法可求出a+b的最大值為2.通過(guò)解2≤|x+1|-|x-2|即可求出x的取值范圍.
解答:解:由已知,只需|x+1|-|x-2|大于等于a+b的最大值即可.
由于a2+b2=2,令a=
2
cosθ,b=
2
sinθ,則a+b=
2
(cosθ+sinθ)=2sin(θ+
π
4
),故a+b的最大值為2.
所以2≤|x+1|-|x-2|.可以化為下面的三個(gè)不等式組
x≤-1
-(x+1)+(x-2)≥2
,此時(shí)無(wú)解
-1<x<2
(x+1)+(x-2)≥2
,解得
3
2
≤x<2

x≥2
(x+1)-(x-2)≥2
,解得x≥2
綜上所述,x的取值范圍是[
3
2
,2)∪[2,+∞)=[
3
2
,+∞

故答案為:[
3
2
,+∞
點(diǎn)評(píng):本題考查函數(shù)恒成立問(wèn)題,絕對(duì)值不等式的解法.考查邏輯思維、計(jì)算、分類討論等思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2+b2=2且c≤a+b恒成立,則c的范圍是( 。
A、(-∞,-2]
B、(-∞,-
2
]
C、[-
2
2
]
D、(-∞,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2+b2=2,則asinθ+bcosθ的最大值是(    )

A.1             B.2            C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2+b2=2,c2+d2=4,求ad+bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江西省吉安一中高三最后一模數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知a2+b2=2,若a+b≤|x+1|-|x-2|對(duì)任意實(shí)數(shù)a、b恒成立,則x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案