【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設(shè)異面直線EM與AF所成的角為,則cos的最大值為 .
【答案】
【解析】建立坐標系如圖所示.設(shè)AB=1, 則=(1,,0), E(,0, 0), 設(shè)M(0,y, 1)(0≤y≤1), 則=(-,y, 1), 由于異面直線所成角的范圍為(0, ], 所以cos==·[]2=1-, 令8y+1=t, 1≤t≤9, 則=≥, 當t=1時取等號,所以cos==≤x=, 當y=0時, 取得最大值。
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角的相關(guān)知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點O為極點,x軸的正半軸為極軸建立極坐標系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點A,B(均異于原點O)
(1)求曲線C1 , C2的極坐標方程;
(2)當 時,求|OA|2+|OB|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標I卷)函數(shù)f(x)=cos(x+)的部分圖像如圖所示,則f(x)的單調(diào)遞減區(qū)間為( )
A.(k-,k+), kZ
B.(2k-,2k+),kZ
C.(k-,k+), kZ
D.(2k-,2k+),kZ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)設(shè)直線l與拋物線y2=4x相交于A,B兩點,與圓(x-5)2+y2=r2(r>0)相切于點M,且M為線段AB的中點.若這樣的直線l恰有4條,則r的取值范圍是( )
A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知A、B、C為△ABC的內(nèi)角,tanA、tanB是關(guān)于方程x2+px-p+1=0(p∈R)兩個實根.
(1)求C的大小
(2)若AB=1,AC=,求p的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)如圖,A , B , C , D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan+tan+tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)如圖,橢圓E:(a>b>0)經(jīng)過點A(0,-1),且離心率為.
(1)求橢圓E的方程;
(2)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),證明:直線AP與AQ的斜率之和為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·江蘇) 已知函數(shù)f(x)=x3+ax2+b(a,bR).
(1)試討論f(x)的單調(diào)性;
(2)若b=c-a(實數(shù)c是a與無關(guān)的常數(shù)),當函數(shù)f(x)有三個不同的零點時,a的取值范圍恰好是(-,-3)(1,)(,+),求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015福建)已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當x>1時,;
(3)確定實數(shù)k的所有可能取值,使得存在,當時,恒有>.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com