【題目】已知圓

1)若直線過定點,且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

【答案】1;(2.

【解析】

1)將的斜率分成存在和不存在兩種情況,結(jié)合圓心到直線的距離等于半徑,求得的方程.

2)設(shè)出圓的圓心,利用兩圓外切的條件列方程,由此求得圓心的坐標(biāo),進而求得圓的方程.

1)圓的圓心為,半徑為.當(dāng)直線斜率不存在時,即直線,此時直線與圓相切.當(dāng)直線斜率存在時,設(shè)直線的方程為,即,由于與圓相切,圓心到直線的距離等于半徑,即,即,解得,直線的方程為.

綜上所述,直線的方程為.

2)由于圓圓心在直線上,設(shè)圓心,圓的半徑,由于圓與圓外切,所以,即,即,解得.所以圓心.所以圓的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點,直線交橢圓于不同的兩點,設(shè)線段的中點為

1求橢圓的方程;

2當(dāng)的面積為其中為坐標(biāo)原點時,試問:在坐標(biāo)平面上是否存在兩個定點,使得當(dāng)直線運動時,為定值?若存在,求出點的坐標(biāo)和定值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logax+2),gx)=loga2x)(a0,a≠1).

1)求函數(shù)fx)﹣gx)的定義域;

2)判斷fx)﹣gx)的奇偶性并證明;

3)求fx)﹣gx)>0x取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】常州地鐵項目正在緊張建設(shè)中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔 (單位:分鐘)滿足經(jīng)測算,地鐵載客量與發(fā)車時間間隔相關(guān),當(dāng)時地鐵為滿載狀態(tài),載客量為1200人,當(dāng)時,載客量會減少,減少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為560人,記地鐵載客量為.

⑴ 求的表達式,并求當(dāng)發(fā)車時間間隔為6分鐘時,地鐵的載客量;

⑵ 若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018·江西六校聯(lián)考)ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-.

(1)求角B的大;

(2)f(x)=cos2x+sin2(x+B),求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y滿足條件,求4x-3y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸分別交于兩點.

①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:,直線:

1)求證:直線過定點;

2)判斷該定點與圓的位置關(guān)系;

3)當(dāng)m為何值時,直線被圓C截得的弦最長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一:對于一個函數(shù),若存在兩條距離為的直線,使得時,恒成立,則稱函數(shù)內(nèi)有一個寬度為的通道.

定義二:若一個函數(shù)對于任意給定的正數(shù),都存在一個實數(shù),使得函數(shù)內(nèi)有一個寬度為的通道,則稱在正無窮處有永恒通道.

下列函數(shù);;;. 其中在正無窮處有永恒通道的函數(shù)序號是 .

查看答案和解析>>

同步練習(xí)冊答案