【題目】已知函數(shù)f(x)= x3+ax2+bx+ (a,b是實數(shù)),且f′(2)=0,f(﹣1)=0.
(1)求實數(shù)a,b的值;
(2)當x∈[﹣1,t]時,求f(x)的最大值g(t)的表達式.

【答案】
(1)解:f'(x)=x2+2ax+b

∵f'(2)=0,f(﹣1)=0

,解得


(2)解:由(1)可知,f(x)= ,f'(x)=x2﹣2x=x(x﹣2),

由f'(x)>0,得x<0,或x>2;由f'(x)<0,得0<x<2,

故f(x)在(﹣∞,0)和(2,+∞)單調遞增,在(0,2)單調遞減,

所以f(x)極小值=f(2)=0,

,得x=﹣1,或x=2;

,得x=0,或x=3.

結合單調性及極值點,畫出圖像如下:

結合圖像,對t分類討論:

1)﹣1<t<0時,f(x)在[﹣1,t]上單調遞增, ;

2)0≤t<3時,

3)t≥3時,

綜上可得,g(t)=


【解析】(1)直接根據(jù)f′(2)=0,f(﹣1)=0得到關于a,b的方程組,即可解出a,b的值;(2)利用導數(shù)求出f(x)的單調區(qū)間,極值點,并通過解方程f(x)= ,得到特殊點(3, ),然后結合函數(shù)圖像,對t分類討論,分別求出f(x)的最大值即可.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性和函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系 中,過橢圓 右焦點的直線兩點 , 的中點,且 的斜率為 .

(1)求橢圓的標準方程;

(2)設過點的直線(不與坐標軸垂直)與橢圓交于 兩點,若在線段上存在點,

使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本市某玩具生產(chǎn)公司根據(jù)市場調查分析,決定調整產(chǎn)品生產(chǎn)方案,準備每天生產(chǎn) , 三種玩具共100個,且種玩具至少生產(chǎn)20個,每天生產(chǎn)時間不超過10小時,已知生產(chǎn)這些玩具每個所需工時(分鐘)和所獲利潤如表:

玩具名稱

工時(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產(chǎn)種玩具個數(shù)種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩個非零向量 、 不共線.
(1)若 = + =2 +8 , =3( ),求證:A、B、D三點共線;
(2)求實數(shù)k使k + 與2 +k 共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.

(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作,約成書于四、五世紀,也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結果為( )

A. 120 B. 121 C. 112 D. 113

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設相交于點,

1)證明:平面平面;

2)若與平面所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意實數(shù)x,y滿足f(x)+f(y)=f(x+y)+3,f(3)=6,當x>0 時,f(x)>3,那么,當f(2a+1)<5時,實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是半徑為2的半球的直徑, 為球面上的兩點且,

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案