19.已知f(x)=$\frac{m{x}^{2}-2mx+m-1}{{x}^{2}-2x+1}$(m∈R),試比較f(5)與f(-π)的大。

分析 化簡(jiǎn)函數(shù),利用作差法,即可得出結(jié)論.

解答 解:f(x)=$\frac{m{x}^{2}-2mx+m-1}{{x}^{2}-2x+1}$=m-$\frac{1}{(x-1)^{2}}$,
∴f(5)-f(-π)=m-$\frac{1}{16}$-m+$\frac{1}{(-π-1)^{2}}$<0,
∴f(5)<f(-π).

點(diǎn)評(píng) 本題考查大小比較,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2b-1}{x}+b+3,x>1}\\{-{x}^{2}+(2-b)x,x≤1}\end{array}\right.$在x∈R內(nèi)滿足:對(duì)于任意的實(shí)數(shù)x1≠x2,都有(x1-x2)(f(x1)-f(x2))>0成立,則實(shí)數(shù)b的取值范圍為[-$\frac{1}{4}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.四棱柱ABCD-A1B1C1D1的三視圖如圖所示,E、F分別為A1B1、CC1的中點(diǎn).
(1)求證:EF∥平面A1BC;
(2)求D1到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合M={y|y=x2-1,x∈R},集合N={x|y=$\sqrt{9-{x}^{2}}$,x∈R},則M∩N={x|-1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若sinθ=$\frac{k+1}{k-3}$,cosθ=$\frac{k-1}{k-3}$,且θ的終邊不落在坐標(biāo)軸上,則tanθ的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=0,nan+1-(n+1)an=n2+n+1,n∈N*
(1)證明:{$\frac{{a}_{n}+1}{n}$}為等差數(shù)列:
(2)求數(shù)列{an}的通項(xiàng)公式:
(3)證明:$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{5+m}$=1的離心率是$\frac{1}{2}$,則實(shí)數(shù)m=-$\frac{5}{4}$或$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知冪函數(shù)f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2對(duì)任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率與雙曲線x2-y2=1的離心率互為倒數(shù),且C過點(diǎn)P($\sqrt{2},1$).
(1)求C的方程;
(2)若C的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l與C相交于A,B兩點(diǎn),求△F2AB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案