若實(shí)數(shù)x、y滿足約束條件數(shù)學(xué)公式,且目標(biāo)函數(shù)z=x+y的最大值等于


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    1
C
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,只需求出直線z=x+y過點(diǎn)A(4,0)時(shí),z最大值即可.
解答:解:先根據(jù)約束條件畫出可行域,
然后平移直線0=x+y,
當(dāng)直線z=x+y過點(diǎn)A(4,0)時(shí),z最大值為4.
故選C.
點(diǎn)評(píng):本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x+2y≥3
2x+y≤3
,且x≥0,則x-y的最大值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
5x+3y≤15
y≤x+1
x-5y≤3
,則z=3x+5y
的最大值為
17
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x+1≥0
x-y+1≤0
x+y-2≤0
,則z=4x+y的最大值為
7
2
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足約束條件
x+y≥0
y≤x+2
0≤x≤1
,則z=2x-y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)若實(shí)數(shù)x、y滿足約束條件
x≥0
y≥0
2x+y-24≤0
-3x+y+6≥0
則目標(biāo)函數(shù)z=2x-3y的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案