A. | 若m、n都平行于平面α,則m、n一定不是相交直線 | |
B. | 若m、n都垂直于平面α,則m、n一定是平行直線 | |
C. | 已知α、β互相平行,m、n互相平行,若m∥α,則n∥β | |
D. | 若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行 |
分析 A,平行于同一平面的兩條直線可能相交,也可能平行;
B,垂直于同一平面的兩條直線一定平行;
C,α、β互相平行,m、n互相平行,若m∥α,則n∥β或 n?β;
D,m、n在平面α內(nèi)的射影互相平行,則m、n互相平行或相交,
解答 解:對(duì)于A,平行于同一平面的兩條直線可能相交,也可能平行,故錯(cuò);
對(duì)于B,垂直于同一平面的兩條直線一定平行,故正確;
對(duì)于C,α、β互相平行,m、n互相平行,若m∥α,則n∥β或 n?β,故錯(cuò);
對(duì)于D,m、n在平面α內(nèi)的射影互相平行,則m、n互相平行或相交,故錯(cuò),
故選:B.
點(diǎn)評(píng) 本題考查了空間線線、線面、面面位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{12}{13}$ | B. | $-\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -9 | C. | 10 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |$\overrightarrow$|=1 | B. | ($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$ | C. | $\overrightarrow{a}$•$\overrightarrow$=1 | D. | |$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “x2+x-2>0”是“x>1”的充分不必要條件 | |
B. | “若am2<bm2,則a<b”的逆否命題為真命題 | |
C. | 命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
D. | 命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com