如圖在直角梯形ABCD中,AB∥CD,∠D為直角,AB=3,AD=,E為BC中點(diǎn),若=3,則的值是( )
A.6
B.-6
C.3
D.-3
【答案】分析:根據(jù)=3和=0,利用向量的加法運(yùn)算求出,再由勾股定理求出AC的長(zhǎng),利用向量的加減法運(yùn)算求出,由向量的數(shù)量積運(yùn)算性質(zhì)求出的值.
解答:解:由題意得,==3,
∵AB∥CD,∠D為直角,∴=0,代入上式得,
,即,得,
則AC===
∵E為BC中點(diǎn),∴=,且=,
=•()=-)=-(9-3)=-3,
故選D.
點(diǎn)評(píng):本題考查向量數(shù)量積在幾何中的應(yīng)用,以及向量的加減法和數(shù)乘幾何意義,解答關(guān)鍵是利用向量數(shù)量積的運(yùn)算性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,CD=2,AB=3,∠ABC=60°,將此梯形以AD所在直線為軸旋轉(zhuǎn)一周,所得幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建模擬)在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°,如圖1.把△ABD沿BD翻折,使得平面ABD⊥平面BCD,如圖2.
(Ⅰ)求證:CD⊥AB;
(Ⅱ)若點(diǎn)M為線段BC中點(diǎn),求點(diǎn)M到平面ACD的距離;
(Ⅲ)在線段BC上是否存在點(diǎn)N,使得AN與平面ACD所成角為60°?若存在,求出
BN
BC
的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在底面是直角梯形的四棱錐S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12
,求面SCD與面SEA所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,點(diǎn)E為AC中點(diǎn),將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(1)求證:DA⊥BC;
(2)在CD上找一點(diǎn)F,使AD∥平面EFB;
(3)求點(diǎn)A到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•合肥三模)如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上點(diǎn),且AM=BN,將三角形ADE沿AE折起.下列說(shuō)法正確的是
①②④
①②④
.(填上所有正確的序號(hào))
①不論D折至何位置(不在平面ABC內(nèi))都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內(nèi))都有MN∥AB;
④在折起過(guò)程中,一定存在某個(gè)位置,使EC⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案