【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中
,
),若傾斜角為
且經(jīng)過坐標(biāo)原點(diǎn)的直線
與圓
相交于點(diǎn)
(
點(diǎn)不是原點(diǎn)).
(1)求點(diǎn)的極坐標(biāo);
(2)設(shè)直線過線段
的中點(diǎn)
,且直線
交圓
于
兩點(diǎn),求
的最大值.
【答案】(1)(2)
【解析】試題分析:
(1)由點(diǎn)A的極角可求得點(diǎn)的極坐標(biāo)
.
(2)由題意:
的最大值為
(此時(shí)直線
的傾斜角為
).
試題解析:
解: (1) 直線
的傾斜角為
,
點(diǎn)
的極角
.
代入圓的極坐標(biāo)方程得
.
點(diǎn)
的極坐標(biāo)
.
(2)由(1)得線段的中點(diǎn)
的極坐標(biāo)是
,
的直角坐標(biāo)為
.
圓
的極坐標(biāo)方程為
,
圓
的直角坐標(biāo)方程為
.
設(shè)直線的參數(shù)方程為
(
為參數(shù)).
代入,得
.
設(shè)的參數(shù)依次為
,則
.
.
的最大值為
(此時(shí)直線
的傾斜角為
)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,其前
項(xiàng)和為
,
是等比數(shù)列,且
,
,
.
(1)求數(shù)列與
的通項(xiàng)公式;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是圓
的直徑,點(diǎn)
是圓
上異于
、
的點(diǎn),直線度
平面
,
、
分別是
、
的中點(diǎn).
(Ⅰ)設(shè)平面與平面
的交線為
,求直線
與平面
所成角的余弦值;
(Ⅱ)設(shè)(Ⅰ)中的直線與圓
的另一個(gè)交點(diǎn)為點(diǎn)
,且滿足
,
,當(dāng)二面角
的余弦值為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉(cāng)庫(kù)M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì), 可以使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線
,
所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間
上的均勻隨機(jī)數(shù)
和10個(gè)區(qū)間
上的均勻隨機(jī)數(shù)
(
,
),其數(shù)據(jù)如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個(gè)曲邊三角形面積的一個(gè)近似值是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.在(0, )內(nèi),sinx>cosx
B.函數(shù)y=2sin(x+ )的圖象的一條對(duì)稱軸是x=
π
C.函數(shù)y= 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x﹣ )的圖象向右平移
個(gè)單位得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)滿足 =
+
.
(1)求證:A、B、C三點(diǎn)共線;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)=
+(2m+
)|
|+m2的最小值為5,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:三棱柱中,底面是正三角形,側(cè)棱
面
,
是棱
的中點(diǎn),點(diǎn)
在棱
上,且
.
()求證:
平面
.
()求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線
的焦點(diǎn), 若點(diǎn)
在
上,且
.
(1)求的值;
(2)若直線經(jīng)過點(diǎn)
且與
交于
(異于
)兩點(diǎn), 證明: 直線
與直線
的斜率之積為常數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com