【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:對(duì)于每位銷售人員,均以10萬(wàn)元為基數(shù),若銷售利潤(rùn)沒(méi)超出這個(gè)基數(shù),則可獲得銷售利潤(rùn)的5%的獎(jiǎng)金;若銷售利潤(rùn)超出這個(gè)基數(shù)(超出的部分是a萬(wàn)元),則可獲得萬(wàn)元的獎(jiǎng)金.記某位銷售人員獲得的獎(jiǎng)金為y(單位:萬(wàn)元),其銷售利潤(rùn)為x(單位:萬(wàn)元).

(1)寫(xiě)出這位銷售人員獲得的獎(jiǎng)金y與其銷售利潤(rùn)x之間的函數(shù)關(guān)系式;

(2)如果這位銷售人員獲得了萬(wàn)元的獎(jiǎng)金,那么他的銷售利潤(rùn)是多少萬(wàn)元?

【答案】(1) (2) 35萬(wàn)元

【解析】

1)根據(jù)獎(jiǎng)勵(lì)方案,可得分段函數(shù);
2)確定,利用函數(shù)解析式,即可得到結(jié)論.

(1)由題意,若銷售利潤(rùn)沒(méi)超出10萬(wàn),即

若銷售利潤(rùn)超出10萬(wàn),即

所以這位銷售人員獲得的獎(jiǎng)金y與其銷售利潤(rùn)x之間的函數(shù)關(guān)系式是,

(2)由(1),,

當(dāng)時(shí),.

解之,(萬(wàn)元)

:如果這位銷售人員獲得了萬(wàn)元的獎(jiǎng)金,那么他的銷售利潤(rùn)是35萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:與直線:,:,過(guò)橢圓上的一點(diǎn),的平行線,分別交,,兩點(diǎn),若為定值,則橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A是橢圓的上頂點(diǎn),斜率為的直線交橢圓EA、M兩點(diǎn),點(diǎn)N在橢圓E上,且.

1)當(dāng)時(shí),求的面積;

2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率等于.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓的右焦點(diǎn)作直線交橢圓兩點(diǎn),交軸于點(diǎn),若,求證為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有6人

6

6

3

1

2

0

選考方案待確定的有8人

5

4

0

1

2

1

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

0

0

1

1

(Ⅰ)試估計(jì)該學(xué)校高一年級(jí)確定選考生物的學(xué)生有多少人?

(Ⅱ)寫(xiě)出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫(xiě)出結(jié)果)

(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的頻率):

;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).

(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左,右焦應(yīng)分別是,,離心率為,過(guò)且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.

1)求橢圓的方程;

2)已知直線與橢圓切于點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn).證明:存在常數(shù),使得,并求的值;

3)點(diǎn)是橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接,,設(shè)后的角平分線的長(zhǎng)軸于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCDAB垂直于ADBC,,且.M是棱SB的中點(diǎn).

(Ⅰ)求證:SCD;

(Ⅱ)求二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案