【題目】已知函數(shù)的定義域為,對于任意的,都有且當時,,若.

(1)求證:為奇函數(shù);

(2)求證: 上的減函數(shù);

(3)求函數(shù)在區(qū)間[-2,4]上的值域.

【答案】(1)見解析,(2)見解析,(3) [-8,4]

【解析】

1)先利用特殊值法,求證f0)=0,令y=﹣x即可求證;

2)由(1)得fx)為奇函數(shù),f(﹣x)=﹣fx),利用定義法進行證明;

3)由函數(shù)為減函數(shù),求出f(﹣2)和f4)繼而求出函數(shù)的值域,

1)∵fx)的定義域為R,令xy0,則f0+0)=f0+f0)=2f0),

f0)=0

y=﹣x,則fxx)=fx+f(﹣x),

f0)=fx+f(﹣x)=0

f(﹣x)=﹣fx),故fx)為奇函數(shù).

2)任取x1,x2R,且x1x2

fx2)﹣fx1)=fx2+f(﹣x1)=fx2x1).

又∵x2x10,∴fx2x1)<0,

fx2)﹣fx1)<0,

fx1)>fx2).

fx)是R上的減函數(shù).

3)∵f(﹣1)=2,∴f(﹣2)=f(﹣1+f(﹣1)=4

fx)為奇函數(shù),∴f2)=﹣f(﹣2)=﹣4,

f4)=f2+f2)=﹣8

由(2)知fx)是R上的減函數(shù),

所以當x=﹣2時,fx)取得最大值,最大值為f(﹣2)=4;

x4時,fx)取得最小值,最小值為f4)=﹣8

所以函數(shù)fx)在區(qū)間[2,4]上的值域為[8,4]

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙去某公司應聘面試.該公司的面試方案為:應聘者從6道備選題中一次性隨機抽取3道題,按照答對題目的個數(shù)為標準進行篩選.已知6道備選題中應聘者甲有4道題能正確完成,2道題不能完成;應聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學期望;

(2)請分析比較甲、乙兩人誰的面試通過的可能性較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)對任意,都有,且時,.

(1)求證是奇函數(shù);

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點為,離心率為,已知過軸上一點作一條直線,交橢圓于兩點,且的周長最大值為8.

(1)求橢圓方程;

(2)以點為圓心,半徑為的圓的方程為.的中點作圓的切線,為切點,連接,證明:當取最大值時,點在短軸上(不包括短軸端點及原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,若,則__________ (用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組調(diào)查學生使用智能手機對學習成績的影響,詢問了 30 名同學,得到如下的 列聯(lián)表:

使用智能手機

不使用智能手機

總計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

總計

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯誤的概率不超過 0.005 的前提下認為使用智能手機對學習成績有影響?

(Ⅱ)從使用學習成績優(yōu)秀的 12 名同學中,隨機抽取 2 名同學,求抽到不使用智能手機的人數(shù)的分布列及數(shù)學期望.智能手機的 20 名同學中,按分層抽樣的方法選出 5 名同學,求所抽取的 5 名同學中“學習成績優(yōu)秀”和“學習成績不優(yōu)秀”的人數(shù);

(Ⅲ)從問題(Ⅱ)中倍抽取的 5 名同學,再隨機抽取 3 名同學,試求抽取 3 名同學中恰有 2 名同學為“學習成績不優(yōu)秀”的概率.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究機構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機選取了200名年齡在內(nèi)的市民進行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線的焦點為,拋物線兩點,在拋物線的準線上的射影分別為.

(1)如圖,若點在線段上,過的平行線與拋物線準線交于,證明:的中點;

(2)如圖,若的面積是的面積的兩倍,求中點的軌跡方程.

查看答案和解析>>

同步練習冊答案