f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf′(x)-f(x)<0,對任意正數(shù)a,b,若a<b,則必有( 。
分析:由題意可構(gòu)造函數(shù)g(x)=
x
f(x)
,由g′(x)=
f(x)-xf′(x)
[f(x)]2
>0,可得到g(x)在(0,+∞)上單調(diào)遞增,結(jié)合任意正數(shù)a<b即可得答案.
解答:解:∵f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf′(x)-f(x)<0,
∴令g(x)=
x
f(x)
,
則g′(x)=
f(x)-xf′(x)
[f(x)]2
>0,
∴g(x)在(0,+∞)上單調(diào)遞增,又0<a<b,
∴0<g(a)<g(b),
∴0<
a
f(a)
b
f(b)

∴af(b)<bf(a).
故選A.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,著重考查構(gòu)造函數(shù)的思想與觀察分析問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

己知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞),點(f(x)-lnx,1)總在函數(shù)y=f(x)的圖象上,則方程f(x)+2x-7=0的解所在的區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
13
)=1

(1)求f(1)的值;
(2)如果f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)對于定義在(0,+∞)上的函數(shù)f(x),滿足xf′(x)+2f(x)<0,求證:函數(shù)y=x2f(x)在(0,+∞)上是減函數(shù);
(2)請你認真研讀(1)中命題并聯(lián)系以下命題:若f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),滿足xf′(x)+f(x)<0,則y=xf(x)是(0,+∞)上的減函數(shù).然后填空建立一個普遍化的命題:設(shè)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),n∈N+,若
x
x
×f′(x)+n×f(x)<0,則
y=xnf(x)
y=xnf(x)
是(0,+∞)上的減函數(shù).
注:命題的普遍化就是從考慮一個對象過渡到考慮包含該對象的一個集合;或者從考慮一個較小的集合過渡到考慮包含該較小集合的更大集合.
(3)證明(2)中建立的普遍化命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf′(x)+f(x)≤0對任意正數(shù)a,b若a<b,給出下列四個結(jié)論:
(1)bf(b)≤af(a);
(2)af(a)≤bf(b);
(3)bf(a)≤af(b);
(4)af(b)≤bf(a).
其中正確結(jié)論的序號是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf′(x)-f(x)≥0,對任意正數(shù)m,n若m≥n,則mf(n)與nf(m)的大小關(guān)系是mf(n)
nf(m)(請用≤,≥,或=)

查看答案和解析>>

同步練習冊答案