如圖所示,Rt△A′B′C′為水平放置的△ABC的直觀圖,其中A′C′⊥B′C′,B′O′=O′C′=1,則△ABC的面積為
2
2
2
2
分析:由直觀圖和原圖的之間的關(guān)系,由直觀圖畫法規(guī)則將△A′B′C′還原為△ABC,如圖所示,△ABC是一個(gè)等腰三角形,直接求解其面積即可.
解答:解:由直觀圖畫法規(guī)則將△A′B′C′還原為△ABC,
如圖所示,
則有BO=OC=1,AO=2
2

∴S△ABC=
1
2
BC•AO=
1
2
×2×2
2
=2
2

故答案為:2
2
點(diǎn)評(píng):本題考查斜二測(cè)畫法中原圖和直觀圖之間的關(guān)系,屬基本概念、基本運(yùn)算的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)A(1,0).點(diǎn)R在y軸上運(yùn)動(dòng),T在x軸上,N為動(dòng)點(diǎn),且
RT
RA
=0,
RN
+
RT
=0,
(1)設(shè)動(dòng)點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(2)過(guò)點(diǎn)B(-2,0)的直線l與曲線C交于點(diǎn)P、Q,若在曲線C上存在點(diǎn)M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,點(diǎn)A(p,o)(p>0),點(diǎn)R在y軸上運(yùn)動(dòng),點(diǎn)T在x軸上,N為動(dòng)點(diǎn),且
RT
RA
=0,
RN
+
RT
=0

(I)設(shè)動(dòng)點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(II)設(shè)P,Q是曲線C上的兩個(gè)動(dòng)點(diǎn),M(x0,y0)是曲線C上一定點(diǎn),若
PM
QM
=0
,試證明直線PQ經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖所示,Rt△A′B′C′為水平放置的△ABC的直觀圖,其中A′C′⊥B′C′,B′O′=O′C′=1,則△ABC的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省白山市長(zhǎng)白山一高高一(上)綜合檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題

如圖所示,Rt△A′B′C′為水平放置的△ABC的直觀圖,其中A′C′⊥B′C′,B′O′=O′C′=1,則△ABC的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案