【題目】函數(shù).

1)若函數(shù)處取得極值,求a的值;

2)若函數(shù)的圖象在直線圖象的下方,求a的取值范圍;

3)求證:.

【答案】1;(2;(3)證明見解析.

【解析】

1)利用得到,并利用極值的充分條件進行檢驗即可;

2)由題意可得:,由,可化為.設,利用導數(shù)即可得到極值及其最值;

3)由(2)可知:上單調(diào)遞減,可得,化為,即,令,即可證明.

解:(1,

函數(shù)處取得極值,,即,解得

,

時,,函數(shù)內(nèi)單調(diào)遞減;

時,,函數(shù)內(nèi)單調(diào)遞增.

函數(shù)時取得極小值.

2由題意可得:,

,

,

,則,

,解得,在區(qū)間上單調(diào)遞增;

,解得,在區(qū)間上單調(diào)遞減.

時取得極大值,即最大值,

32可知:上單調(diào)遞減,

,

,化為,

,

,可得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖像上的點處的切線方程為

1若函數(shù)時有極值,的表達式;

2函數(shù)在區(qū)間上單調(diào)遞增求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):

溫差

8

10

11

12

13

發(fā)芽數(shù)(顆)

79

81

85

86

90

(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關于的線性回歸方程;

(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;

(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高一新生分成水平相同的甲,乙兩個平行班,每班50.陳老師采用A,B兩種不同的教學方式分別在甲,乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下,計成績不低于90分者為成績優(yōu)秀”.

1)從乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的兩個均成績優(yōu)秀的概率.

2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為成績優(yōu)秀與教學方式有關.

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

附:臨界值表

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,,側(cè)面底面

(1)作出平面與平面的交線,并證明平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),整理如下:

甲公司員工410,390,330360,320,400,330,340,370,350

乙公司員工360,420,370,360,420,340440,370,360,420

每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(350)的部分每件0.6元,超出350件的部分每件0.9.

1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為 (單位:元),求的分布列和數(shù)學期望;

3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國綜合國力的不斷增強,不少綜合性娛樂場所都引進了摩天輪這一娛樂設施.(如圖1)有一半徑為40m的摩天輪,軸心距地面50m,摩天輪按逆時針方向做勻速旋轉(zhuǎn),轉(zhuǎn)一周需要3min.點與點都在摩天輪上,且點相對于點落后1min,當點在摩天輪的最低點處時開始計時,以軸心為坐標原點,平行于地面且在摩天輪所在平面內(nèi)的直線為軸,建立圖2所示的平面直角坐標系.

1)若,求點的縱坐標關于時間的函數(shù)關系式;

2)若,求點距離地面的高度關于時間的函數(shù)關系式,并求時,點離地面的高度(結(jié)果精確到0.1,計算所用數(shù)據(jù):

3)若,當兩點距離地面的高度差不超過時,求時間的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明:成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

1)若曲線在點處的切線為,求a的值;

2)若函數(shù)的極小值為,求a的值;

3)若,證明:當時,.

查看答案和解析>>

同步練習冊答案