設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=()x,若對(duì)任意的x∈[a, a+l],
不等式f(x+a)≥f2(x)恒成立,則實(shí)數(shù)a的取值范圍是____ 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
把平面上一切單位向量歸結(jié)到共同的始點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是
___________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C: (a>b>0)上任一點(diǎn)P到兩個(gè)焦點(diǎn)的距離的和為2,P與橢圓長(zhǎng)軸兩頂點(diǎn)連線的斜率之積為-.設(shè)直線l過橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(1)若 (O為坐標(biāo)原點(diǎn)),求|y1-y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在點(diǎn)Q,使得直線QA,QB的傾斜角互為補(bǔ)角?若存在,求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在2014年3月15日,某超市對(duì)某種商品的銷售量及其售價(jià)進(jìn)行調(diào)查分析,發(fā)現(xiàn)售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:
售價(jià)x | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y | 11 | 10 | 8 | 6 | 5 |
由散點(diǎn)圖可知,銷售量y與售價(jià)x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是:
y= -3.2x+a,則a=( )
A. -24 B. 35.6 C. 40.5 D. 40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為( )
A.() B.() C.(,12) D.(6,l2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q (0,3)的距離最大值為4,過點(diǎn)M(3,0)的直線交橢圓C于點(diǎn)A、B.
(I)求橢圓C的方程。
(II)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com