17.盒中裝有8個(gè)零件,其中有2個(gè)次品,現(xiàn)從中隨機(jī)抽取2個(gè),則恰有1個(gè)次品的概率為( 。
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{3}{7}$D.$\frac{1}{3}$

分析 從8個(gè)零件中隨機(jī)抽取2個(gè),共有${C}_{8}^{2}$種取法,計(jì)算恰有1個(gè)次品的取法,代入概率公式,可得答案.

解答 解:從8個(gè)零件中隨機(jī)抽取2個(gè),共有${C}_{8}^{2}$=28種取法,
其中恰有1個(gè)次品的取法有:${C}_{6}^{1}•{C}_{2}^{1}$=12種,
故恰有1個(gè)次品的概率P=$\frac{12}{28}$=$\frac{3}{7}$,
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是古典概型及其概率計(jì)算公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓心是(0,2),半徑是$\sqrt{3}$,則此圓的方程是x2+(y-2)2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=log2(4x+1)-x.
(1)求證:函數(shù)f(x)是偶函數(shù);
(2)若對(duì)任意x∈[1,2],不等式f(x)≤log2($\frac{m}{{2}^{x}}$+3)恒成立,求實(shí)數(shù)m的最小值;
(3)設(shè)函數(shù)g(x)=f(x)-log2(a•2x+1-4a)在(2,+∞)上有且只有一個(gè)零點(diǎn),求正實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知曲線y=$\frac{1}{{e}^{x}+1}$,則曲線的切線中斜率最小的直線與兩坐標(biāo)軸所圍成的三角形的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,該三視圖表示的幾何體是棱臺(tái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為( 。
A.$\frac{20}{31}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=loga(x2-ax+2)在[2,+∞)恒為正,則實(shí)數(shù)a的范圍是( 。
A.0<a<1B.1<a<2C.1<a<$\frac{5}{2}$D.2<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=|lgx|,若$f(a)=f(b)=2f(\frac{a+b}{2})(0<a<b)$,則b所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積等于10+2$\sqrt{3}$+4$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案