已知直線數(shù)學(xué)公式交于P,Q兩點(diǎn),若點(diǎn)F為該橢圓的左焦點(diǎn),則數(shù)學(xué)公式取最小值的t值為


  1. A.
    -數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:確定F的坐標(biāo),設(shè)出P,Q的坐標(biāo),表示出,即可求得結(jié)論.
解答:由題意,F(xiàn)(-4,0)
由橢圓的對(duì)稱性,可設(shè)P(t,s),Q(t,-s),則
=(t+4,s)•(t+4,-s)=(t+4)2-s2=
∴t=-時(shí),取最小值
故選B.
點(diǎn)評(píng):本題考查橢圓的性質(zhì),考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知M(m,m2)、N(n,n2)是拋物線C:y=x2上兩個(gè)不同點(diǎn),且m2+n2=1,m+n≠0,直線l是線段MN的垂直平分線.設(shè)橢圓E的方程為
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)當(dāng)M、N在拋物線C上移動(dòng)時(shí),求直線L斜率k的取值范圍;
(Ⅱ)已知直線L與拋物線C交于A、B、兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,OP中點(diǎn)為S,若
OR
OS
=0
,求橢圓E離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y=x2,F(xiàn)為拋物線的焦點(diǎn),橢圓C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1與C2在第一象限的交點(diǎn),且|MF|=
3
4
,求實(shí)數(shù)a的值;
(2)設(shè)直線l:y=kx+1與拋物線C1交于A,B兩個(gè)不同的點(diǎn),l與橢圓C2交于P,Q兩個(gè)不同點(diǎn),AB中點(diǎn)為R,PQ中點(diǎn)為S,若O在以RS為直徑的圓上,且k 2
1
2
,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-2)2+y2=1,D是y軸上的動(dòng)點(diǎn),直線DA、DB分別切圓C于A、B兩點(diǎn).
(1)如果|AB|=
4
2
3
,求直線CD的方程;
(2)求動(dòng)弦AB的中點(diǎn)的軌跡方程E;
(3)直線x-y+m=0(m為參數(shù))與方程E交于P、Q兩個(gè)不同的點(diǎn),O為原點(diǎn),設(shè)直線OP、OQ的斜率分別為KOP,KOQ,試將KOP•KOQ表示成m的函數(shù),并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以動(dòng)點(diǎn)P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動(dòng)P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點(diǎn),且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設(shè)橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,PQ中點(diǎn)為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案