精英家教網 > 高中數學 > 題目詳情
已知二次函數滿足,且對一切實數恒成立. ;
的解析式;
求證:


見解析

【錯解分析】對條件中的不等關系向等式關系的轉化不知如何下手,沒有將二次不等式與二次函數相互轉化的意識,解題找不到思路。
【正解】(1)由已知令得:
(2)令得:對任意實數恒成立就是 對任意實數恒成立,即:

(3)由(2)知 故

故原不等式成立.
【點評】函數與方程的思想方法是高中數學的重要數學思想方法函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。對于不等式恒成立,引入新的參數化簡了不等式后,構造二次函數利用函數的圖像和單調性進行解決問題,其中也聯(lián)系到了方程無解,體現了方程思想和函數思想。一般地,我們在解題中要抓住二次函數及圖像、二次不等式、二次方程三者之間的緊密聯(lián)系,將問題進行相互轉化。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

方程x2-2ax+4=0的兩根均大于1,則實數a的范圍是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數y=(2k+1)x+b在(-∞,+∞)上是減函數,則(   )
A.k>B.k<C.k>D.k<

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,的最大值是              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數,則不等式的解集_________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若函數的零點個數為,則__ __  _

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同時滿足條件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)(Ⅰ)若,求實數的取值范圍;
(Ⅱ)二次函數,滿足,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數y=x2+2x+3(x≥0)的值域為(  )
A.[3,+∞) B.[0,+∞)C.[2,+∞) D.R

查看答案和解析>>

同步練習冊答案