【題目】如圖,平行四邊形ABCD中,∠DAB=60°AB=2,AD=4,將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

1)求證:ABDE

2)若點(diǎn)FBE的中點(diǎn),求直線AF與平面ADE所成角的正弦值.

【答案】1)證明見解析(2

【解析】

1)由已知結(jié)合余弦定理,求得,再由勾股定理的逆定理有EDDB,根據(jù)面面垂直的性質(zhì)定理可得ED⊥平面ABD即可證明結(jié)論;

2)建立空間直角坐標(biāo)系,求出,進(jìn)而求出坐標(biāo)和平面ADE法向量的坐標(biāo),按照空間線面角公式,即可求解.

1)在△ABD中,由余弦定理:

BD2=AB2+AD22ABADcosDAB,∴,

∴△ABD和△EBD為直角三角形,此即EDDB

DB又是平面EBD和平面ABD的交線,

且平面EBD⊥平面ABDED平面EBD,

ED⊥平面ABD,AB平面ABD,∴ABDE;

2)由(1)知∠ABD=CDB=90°,以D為坐標(biāo)原點(diǎn),

DB,DCDE所在的直線分別為x,y,z軸建立空間直角坐標(biāo)系,

,設(shè)平面ADE的法向量為,

則有,令x=1,則,

,設(shè)直線AF與平面ADE所成角為α,則有,

所以直線直線AF與平面ADE所成角的正弦為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和直線的極坐標(biāo)方程;

(2)在(1)的條件下,直線的極坐標(biāo)方程為,設(shè)曲線與直線的交于點(diǎn)和點(diǎn),曲線與直線的交于點(diǎn)和點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

I)求函數(shù)的單調(diào)區(qū)間;

II)若恒成立,求的取值范圍;

III)當(dāng),時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十二生肖的座位次序如下圖1,中間的狗、豬位置固定不動,其他生肖動物每次順時(shí)針轉(zhuǎn)動一格,即第一次轉(zhuǎn)動后的座位次序如下圖2,這樣繼續(xù)進(jìn)行下去,那么第2019次換座位后,鼠的座位對應(yīng)的編號為________.

圖一:

鼠1

牛2

虎3

兔4

雞10

狗11

豬12

龍5

猴9

羊8

馬7

蛇6

圖二:

雞1

鼠2

牛3

虎4

猴10

狗11

豬12

兔5

羊9

馬8

蛇7

龍6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為坐標(biāo)原點(diǎn),橢圓 的左、右焦點(diǎn)分別為,,通徑長(即過焦點(diǎn)且垂直于長軸的直線與橢圓相交所得的弦長)為3,短半軸長為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過點(diǎn)的直線與橢圓相交于,兩點(diǎn),線段上存在一點(diǎn),兩邊的距離相等,若,間直線的斜率是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCDA1B1C1D1,若AB=BCE,F分別是AB1,BC1的中點(diǎn),則下列結(jié)論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,點(diǎn)P在正方體的對角線AB上,點(diǎn)Q在正方體的棱CD上,若P為動點(diǎn),Q為動點(diǎn),則PQ的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過且垂直于軸的焦點(diǎn)弦的弦長為,過的直線交橢圓兩點(diǎn),且的周長為.

(1)求橢圓的方程;

(2)已知直線,互相垂直,直線且與橢圓交于點(diǎn),兩點(diǎn),直線且與橢圓交于,兩點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計(jì)3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.

(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案