精英家教網 > 高中數學 > 題目詳情

如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角的大小.

(Ⅰ) 見解析(Ⅱ) 所求夾角的大小為

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知直角梯形中,是邊長為2的等邊三角形,.沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側.

(Ⅰ) 求證:平面;
(Ⅱ) 求平面與平面所構成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是正方形,⊥面,且,是側棱的中點.

(1)求證∥平面;
(2)求證平面平面
(3)求直線與底面所成的角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知三棱錐的側棱兩兩垂直,且,,的中點.

(1)求異面直線所成的角的余弦值
(2)求二面角的余弦值
(3)點到面的距離

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在如圖所示的幾何體中,是邊長為2的正三角形,平面ABC,平面平面ABC,BD=CD,且

(1)若AE=2,求證:AC∥平面BDE;
(2)若二面角A—DE—B為60°.求AE的長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知在四棱錐中,底面是邊長為2的正方形,側棱平面,且, 為底面對角線的交點,分別為棱的中點

(1)求證://平面;
(2)求證:平面;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知多面體中,⊥平面,⊥平面, ,的中點.

(1)求證:⊥平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

查看答案和解析>>

同步練習冊答案