設(shè),且曲線y=f(x)在x=1處的切線與x軸平行。
(Ⅰ)求的值,并討論的單調(diào)性;
(Ⅱ)證明:當(dāng)
(Ⅰ)函數(shù)的增區(qū)間為  減區(qū)間為
(Ⅱ)見解析
本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。利用導(dǎo)數(shù)來判定函數(shù)單調(diào)性和研究函數(shù)的最值的綜合運(yùn)用。(1)利用,且曲線y=f(x)在x=1處的切線與x軸平行,求解得到參數(shù)a的值,然后代入函數(shù)式中求解導(dǎo)數(shù)大于零或者小于零的解集,得到結(jié)論。
(2)在第一問的基礎(chǔ)上,根據(jù)單調(diào)增加,故的最大值為
最小值為,從而證明即可。顯然成立
解:(Ⅰ) 
由題知:       所以 =-1     ………2分
此時(shí):
所以函數(shù)的增區(qū)間為  減區(qū)間為 ………5分
(Ⅱ)由(Ⅰ)知單調(diào)增加,故的最大值為
最小值為
從而對任意,,有
而當(dāng)時(shí),  從而     
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(常數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;(5分)
(Ⅱ)設(shè)如果對于的圖象上兩點(diǎn),存在,使得的圖象在處的切線,求證:.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知是函數(shù)的一個(gè)極值點(diǎn)。
(1)求;         (2)求函數(shù)的單調(diào)區(qū)間;
(3)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù) 
(Ⅰ) 當(dāng)時(shí),求證:;(4分)
(Ⅱ) 在區(qū)間恒成立,求實(shí)數(shù)的范圍。(4分)
(Ⅲ) 當(dāng)時(shí),求證:.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2)設(shè),若對任意,有,求的取值范圍;
(3)在(1)的條件下,設(shè)內(nèi)的零點(diǎn),判斷數(shù)列的增減性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,
(1)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),試求的取值范圍;
(2)直接寫出(不需要給出演算步驟)函數(shù)的單調(diào)遞增區(qū)間;
(3)如果存在,使函數(shù),處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(Ⅰ)證明函數(shù)f ( x )的圖象關(guān)于軸對稱;
(Ⅱ)判斷上的單調(diào)性;
(Ⅲ)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為,求此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)求的單調(diào)區(qū)間和極值。 (2)求上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)減區(qū)間是  (      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案