【題目】已知函數(shù).為自然對(duì)數(shù)的底數(shù))

1)當(dāng)時(shí),求處的切線(xiàn)方程,并討論的單調(diào)性;

2)當(dāng)時(shí),,求整數(shù)的最大值.

【答案】(1);上單調(diào)遞增;(2)2.

【解析】

1)利用導(dǎo)數(shù)的幾何意義,由點(diǎn)斜式即可求得切線(xiàn)方程;對(duì)函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負(fù),判斷的單調(diào)性;

2)對(duì)參數(shù)進(jìn)行分類(lèi)討論,對(duì)函數(shù)進(jìn)行二次求導(dǎo),根據(jù)函數(shù)單調(diào)性求參數(shù)范圍即可.

1)當(dāng)時(shí),,

容易知,

故可得切線(xiàn)方程為;

此時(shí)又因?yàn)?/span>,令,解得,

在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,

,

上單調(diào)遞增;

2)因?yàn)楫?dāng)時(shí),恒成立,

即可,恒成立.

.

由(1)可知在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,

.

①當(dāng),即時(shí),,故單調(diào)遞增.

.

若滿(mǎn)足題意,只需,解得.

故此時(shí);

②當(dāng),即時(shí),

因?yàn)?/span>在區(qū)間單調(diào)遞增,且,

⒈當(dāng)時(shí),,

此時(shí)在區(qū)間單調(diào)遞增,

要滿(mǎn)足題意只需,解得,

故此時(shí)只需.

⒉當(dāng)時(shí),因?yàn)?/span>在區(qū)間單調(diào)遞增,

故一定存在,,

且使得在區(qū)間單調(diào)遞減,單調(diào)遞增.

要滿(mǎn)足題意,只需,

.結(jié)合,

可得只需恒成立即可.

整理得只需時(shí)恒成立即可.

顯然是關(guān)于且開(kāi)口向下的二次函數(shù),

無(wú)法滿(mǎn)足題意.

綜上所述:滿(mǎn)足題意的范圍是.

又因?yàn)?/span>,且,

故滿(mǎn)足題意的整數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,文明辦為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話(huà)費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話(huà)費(fèi);

(ii)每次獲贈(zèng)的隨機(jī)話(huà)費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話(huà)費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話(huà)費(fèi),求的分布列及數(shù)學(xué)期望.

附:①

②若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間爆發(fā)的新型冠狀病毒(COVID-19)是新中國(guó)成立以來(lái)感染人數(shù)最多的一次疫情.一個(gè)不知道自己已感染但處于潛伏期的甲從疫區(qū)回到某市過(guò)春節(jié),回到家鄉(xiāng)后與朋友乙、丙、丁相聚過(guò),最終乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假設(shè)他受甲和受乙感染的概率分別是.丁是受甲、乙或丙感染的,假設(shè)他受甲、乙和丙感染的概率分別是、.在這種假設(shè)之下,乙、丙、丁中直接受甲感染的人數(shù)為.

1)求的分布列和數(shù)學(xué)期望;

2)該市在發(fā)現(xiàn)在本地出現(xiàn)新冠病毒感染者后,迅速采取應(yīng)急措施,其中一項(xiàng)措施是各區(qū)必須每天及時(shí),上報(bào)新增疑似病例人數(shù).區(qū)上報(bào)的連續(xù)天新增疑似病例數(shù)據(jù)是“總體均值為,中位數(shù)”,區(qū)上報(bào)的連續(xù)天新增疑似病例數(shù)據(jù)是“總體均值為,總體方差為.設(shè)區(qū)和區(qū)連續(xù)天上報(bào)新增疑似病例人數(shù)分別為分別表示區(qū)和區(qū)第天上報(bào)新增疑似病例人數(shù)(均為非負(fù)).,.

①試比較的大小;

②求中較小的那個(gè)字母所對(duì)應(yīng)的個(gè)數(shù)有多少組?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷(xiāo)量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷(xiāo)量約占,電視機(jī)銷(xiāo)量約占,電冰箱銷(xiāo)量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機(jī)銷(xiāo)量最大的是第4季度

B. 電冰箱銷(xiāo)量最小的是第4季度

C. 電視機(jī)的全年銷(xiāo)量最大

D. 電冰箱的全年銷(xiāo)量最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

I)求的單調(diào)區(qū)間;

(Ⅱ)若R上有兩個(gè)不同的零點(diǎn),且,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱ABCA1B1C1中,MM1分別為AB,A1B1中點(diǎn).

1)求證:C1M1∥面A1MC

2)若面ABC⊥面ABB1A1,△AB1B為正三角形,AB2,BC1,求四棱錐B1AA1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開(kāi)口為正六邊形ABCDEF,側(cè)棱AA'、BB'CC'、DD'EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個(gè)全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說(shuō)蜜蜂比人類(lèi)更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國(guó)數(shù)學(xué)家麥克勞林通過(guò)計(jì)算得到∠BCD′=109°2816'.已知一個(gè)房中BB'5,AB2,tan54°4408',則此蜂房的表面積是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4個(gè)相同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為;把4個(gè)不同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為.現(xiàn)在從的所有整數(shù)中(包括兩個(gè)整數(shù))抽取3個(gè)數(shù),則這3個(gè)數(shù)之和共有( )種結(jié)果.

A.26B.27C.28D.29

查看答案和解析>>

同步練習(xí)冊(cè)答案