已知點在拋物線上.
(1)若的三個頂點都在拋物線上,記三邊所在直線的斜率分別為,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,所在直線的斜率分別為,,求的值.
(1)1,(2)0.

試題分析:
(1)利用拋物線方程將橫坐標用縱坐標表示,即結(jié)合兩點斜率公式進行化簡求值,
(2)類似(1)的解法,
本題實質(zhì)是拋物線參數(shù)方程的應(yīng)用.求代數(shù)的值就是消去所有參數(shù)的過程,用盡量少的參數(shù)正確表示解析式
試題解析:
解:(1)由點在拋物線,得,拋物線,  3分
設(shè),
.    7分
(2)另設(shè),則. 10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂在坐標原點,焦點到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點,設(shè)線段的中垂線與軸交于點 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓E的中心是原點O,其右焦點為F(2,0),過x軸上一點A(3,0)作直線與橢圓E相交于P,Q兩點,且的最大值為.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點P且平行于y軸的直線與橢圓E相交于另一點M,試問M,F,Q是否共線,若共線請證明;反之說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是拋物線上的兩個點,點的坐標為,直線的斜率為k, 為坐標原點.
(Ⅰ)若拋物線的焦點在直線的下方,求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、,為原點.
(1)如圖1,點為橢圓上的一點,的中點,且,求點軸的距離;

(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的長軸為AB,過點B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點,且

(1)求此橢圓的標準方程;
(2)設(shè)P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,的中點,判定直線與以為直徑的圓O位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的左焦點為F1,左、右頂點分別為A1、A2,P為雙曲線上任意一點,則分別以線段PF1,A1A2為直徑的兩個圓的位置關(guān)系為(   )
A.相交B.相切C.相離D.以上情況都有可能

查看答案和解析>>

同步練習冊答案