如圖,已知橢圓過點(diǎn).,離心率為,左、右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、,為坐標(biāo)原點(diǎn).

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)設(shè)直線、的斜線分別為、.      證明:

 

 

 

【答案】

 

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,已知橢圓過點(diǎn),兩個(gè)焦點(diǎn)分別為為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)試問直線的斜率之和是否為定值,若為定值,求出以線段為直徑且過點(diǎn)的圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二5月月考考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、、為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為

(i)證明:;

(ii)問直線上是否存在點(diǎn),使得直線、、的斜率、、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(山東卷)文科數(shù)學(xué)全解全析 題型:解答題

(本小題滿分14分)

如圖,已知橢圓過點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線斜率分別為.

(。┳C明:

(ⅱ )問直線上是否存在一點(diǎn),使直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(山東卷)解析版(文) 題型:解答題

 如圖,已知橢圓過點(diǎn)(1,),離心率為 ,左右焦點(diǎn)分別為.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為為坐標(biāo)原點(diǎn).

    (Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;

   (Ⅱ)設(shè)直線、斜率分別為

證明:

(ⅱ)問直線上是否存在一點(diǎn),

使直線的斜率

滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案