已知函數(shù)f(x)=
xx為有理數(shù)
1-xx為無(wú)理數(shù)
函數(shù)f(x)在哪點(diǎn)連續(xù)( 。
A、處處連續(xù)
B、x=1
C、x=0
D、x=
1
2
分析:本題要求從四個(gè)選項(xiàng)中找出函數(shù)在那個(gè)點(diǎn)處連續(xù),由于函數(shù)的形式復(fù)雜,故求解本題時(shí)宜采用逐一驗(yàn)證排除法選出正確選項(xiàng).
解答:解:對(duì)于選項(xiàng)A,由于f(x)=
xx為有理數(shù)
1-xx為無(wú)理數(shù)
,由定義知不可能處處連續(xù),故A不對(duì);
對(duì)于選項(xiàng)B,x=1左右兩側(cè)函數(shù)的極限一正一負(fù),不可能相等,故B不對(duì);
對(duì)于選項(xiàng)C,左側(cè)函數(shù)極限為負(fù),右側(cè)函數(shù)極限為1,故在x=0處不連續(xù);
對(duì)于選項(xiàng)D,由于
lim
x→
1
2
+
f(x)=
lim
x→
1
2
-
f(x)=f(
1
2
).
故D正確.
故選D.
點(diǎn)評(píng):本題考點(diǎn)是函數(shù)的連續(xù)性,考查由函數(shù)的連續(xù)性得到參數(shù)的方程求參數(shù),函數(shù)連續(xù)性的定義是:如果函數(shù)在某點(diǎn)處的左極限與右極限相等且等于該點(diǎn)處的函數(shù)值,則稱(chēng)此函數(shù)在該點(diǎn)處連續(xù).本題函數(shù)連續(xù)點(diǎn)甚少,故采取了逐一驗(yàn)證方法找出正確答案,在做選擇題時(shí)要充分利用選項(xiàng)所提供的信息來(lái)幫助尋找出正確選項(xiàng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案