精英家教網 > 高中數學 > 題目詳情
設數列{an}是公比大小于1的等比數列,Sn為數列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數列.
(I)求數列{an}的通項公式an;
(II)設cn=log2an+1,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得Tn對于n∈N*恒成立?若存在,求出m的最小值;若不存在,說明理由.
【答案】分析:(I)設數列{an}的公比為q(q>1),利用S3=7,且a1+3,3a2,a3+4構成等差數列,建立方程組,求得首項與公比,即可得到數列{an}的通項公式a;
(II)先求通項,再利用裂項法求和,進而解不等式,即可求得正整數m的最小值.
解答:解:(I)設數列{an}的公比為q(q>1),則∵S3=7,且a1+3,3a2,a3+4構成等差數列,


解得
∴等比數列{an}的通項公式an=2n-1;
(II)=log2an+1=n,∴,∴
∴Tn==
∴Tn對于n∈N*恒成立,只需m(m+1)≥
∴m≤-或m≥
∴正整數m的最小值為1.
點評:本題考查了等比數列的通項公式和數列的求和,考查恒成立問題,正確求通項與數列的和是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}是公比大于1的等比數列,Sn為其前n項和,已知S3=7且a1+3、3a2、a3+4成等差數列.
(1)求數列{an}的通項公式;
(2)設bn=lna2n+1(n∈N*),求數列{bn}的前n項和Tn;
(3)求a2+a5+a8+…+a3n-1+…+a3n+8的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•順義區(qū)二模)設數列{an}是公比為正數的等比數列,a1=3,a3=2a2+9
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log3a1+log3a2+log3a3+…+log3an,求數列{
1bn
}
的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}是公比大小于1的等比數列,Sn為數列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數列.
(I)求數列{an}的通項公式an;
(II)設cn=log2an+1,數列{cncn+2}的前n項和為Tn,是否存在正整數m,使得Tn
1cmcm+1
對于n∈N*恒成立?若存在,求出m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}是公比大于1的等比數列,Sn為數列{an}的前n項和.已知S3=7,且a1+3,3a2,a3+4構成等差數列.求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an}是公比為正數的等比數列,a1=2,a3-a2=12.
(1)求數列{an}的通項公式;
(2)設數列{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案