(本小題12分)設函數(shù),,其中,將的最小值記為.
(I)求的表達式;
(II)設,討論在區(qū)間內(nèi)的單調(diào)性.
(I)
(II)當時, 在區(qū)間內(nèi)單調(diào)遞增;
當時, 在區(qū)間內(nèi)單調(diào)遞減;
當時, 在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.
【解析】解:(I)
.
由于,,故當時,達到其最小值,即
.
(II)
令,得(舍去),
當,即時,,在區(qū)間內(nèi)單調(diào)遞增
當,即時,,在區(qū)間內(nèi)單調(diào)遞減
當,即時,當時,
當時,即在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增
綜上,當時, 在區(qū)間內(nèi)單調(diào)遞增;
當時, 在區(qū)間內(nèi)單調(diào)遞減;
當時, 在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.
科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試理科數(shù)學試卷 題型:解答題
(本小題滿分12分)
已知函的部分圖象如圖所示:
(1)求的值;
(2)設,當時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題分A,B類,滿分12分,任選一類,若兩類都選,以A類記分)
(A類)已知函數(shù)的圖象恒過定點,且點又在函
數(shù)的圖象.
(1)求實數(shù)的值; (2)解不等式;
(3)有兩個不等實根時,求的取值范圍.
(B類)設是定義在上的函數(shù),對任意,恒有
.
⑴求的值; ⑵求證:為奇函數(shù);
⑶若函數(shù)是上的增函數(shù),已知且,求的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
已知定理:若“為常數(shù),滿足,則函數(shù)的圖象關于點中心對稱!痹O函數(shù),定義域為A。
(1)證明:函數(shù)的圖象關于點中心對稱;
(2)當時,求函數(shù)值的取值范圍;
(3)對于給定的,設計構造過程:,若,構造過程將繼續(xù)下去;若,構造過程都可以無限進行下去,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com