如圖所示,直四棱柱ABCD′-ABCD(側(cè)棱與底面垂直的棱柱稱為直棱柱)中,當(dāng)?shù)酌嫠倪呅?i>ABCD滿足__________時(shí),ACBD′.(只填上一個(gè)你認(rèn)為正確的結(jié)論即可,不必考慮所有情況)

 ACBD

[解析] 

BDAC,

反過來當(dāng)BDAC時(shí),有ACBD′.

說明:填四邊形ABCD為正方形、菱形均可,只要是滿足ACBD的就行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)二模)如圖所示,直四棱柱ABCD-A1B1C1D1的側(cè)棱AA1長為a,底面ABCD是邊長AB=2a,BC=a的矩形,E為C1D1的中點(diǎn).
(1)求證:DE⊥平面EBC;
(2)求異面直線AD與EB所成的角的大小(結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)二模)如圖所示,直四棱柱ABCD-A1B1C1D1,的棱AA1長為a,底面ABCD是邊長AB=2a,BC=a的矩形,E為C1D1的中點(diǎn).
(1)求證:DE⊥平面EBC.
(2)求點(diǎn)C到平面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直四棱柱ABCD-A1B1C1D1的側(cè)棱AA1長為a,底面ABCD是邊長AB=2a,BC=a的矩形,E為C1D1的中點(diǎn).
(1)求證:DE⊥平面EBC;
(2)求異面直線AD與EB所成的角的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市楊浦區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖所示,直四棱柱ABCD-A1B1C1D1,的棱AA1長為a,底面ABCD是邊長AB=2a,BC=a的矩形,E為C1D1的中點(diǎn).
(1)求證:DE⊥平面EBC.
(2)求點(diǎn)C到平面EBD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案