(2013•北京)給定數(shù)列a1,a2,…,an.對i=1,2,…,n-1,該數(shù)列前i項的最大值記為Ai,后n-i項ai+1,ai+2,…,an的最小值記為Bi,di=Ai-Bi
(Ⅰ)設(shè)數(shù)列{an}為3,4,7,1,寫出d1,d2,d3的值;
(Ⅱ)設(shè)a1,a2,…,an-1(n≥4)是公比大于1的等比數(shù)列,且a1>0.證明:d1,d2,…,dn-1是等比數(shù)列;
(Ⅲ)設(shè)d1,d2,…,dn-1是公差大于0的等差數(shù)列,且d1>0.證明:a1,a2,…,an-1是等差數(shù)列.
分析:(Ⅰ)當(dāng)i=1時,A1=3,B1=1,從而可求得d1,同理可求得d2,d3的值;
(Ⅱ)依題意,可知an=a1qn-1(a1>0,q>1),由dk=ak-ak+1⇒dk-1=ak-1-ak(k≥2),從而可證
dk
dk-1
(k≥2)為定值.
(Ⅲ)依題意,0<d1<d2<…<dn-1,可用反證法證明a1,a2,…,an-1是單調(diào)遞增數(shù)列;再證明am為數(shù)列{an}中的最小項,從而可求得是ak=dk+am,問題得證.
解答:解:(Ⅰ)當(dāng)i=1時,A1=3,B1=1,故d1=A1-B1=2,同理可求d2=3,d3=6;
(Ⅱ)由a1,a2,…,an-1(n≥4)是公比q大于1的等比數(shù)列,且a1>0,則{an}的通項為:an=a1qn-1,且為單調(diào)遞增的數(shù)列.
于是當(dāng)k=1,2,…n-1時,dk=Ak-Bk=ak-ak+1,
進而當(dāng)k=2,3,…n-1時,
dk
dk-1
=
ak-ak+1
ak-1-ak
=
ak(1-q)
ak-1(1-q)
=q為定值.
∴d1,d2,…,dn-1是等比數(shù)列;
(Ⅲ)若d1,d2,…,dn-1是公差大于0的等差數(shù)列,則0<d1<d2<…<dn-1
先證明a1,a2,…,an-1是單調(diào)遞增數(shù)列.
否則設(shè)ak是第一個使得ak≤ak-1成立的項,則Ak-1=Ak,Bk-1≤Bk,因此dk-1=Ak-1-Bk-1≥Ak-Bk=dk,矛盾.
因此a1,a2,…,an-1是單調(diào)遞增數(shù)列…①
再證明am為數(shù)列{an}中的最小項,否則設(shè)ak<am(k=1,2,…n-1),顯然k≠1,否則d1=A1-B1=a1-B1≤a1-a1=0,與d1>0矛盾;
因而k≥2,此時考慮dk-1=Ak-1-Bk-1=ak-1-ak<0,矛盾.
因此am為數(shù)列{an}中的最小項,…②
綜合①②dk=Ak-Bk=ak-am(k=1,2,…n-1),于是ak=dk+am,也即a1,a2,…,an-1是等差數(shù)列.
點評:本題考查等差數(shù)列與等比數(shù)列的綜合,突出考查考查推理論證與抽象思維的能力,考查反證法的應(yīng)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三6月考前訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:解答題

目前,在我國部分省市出現(xiàn)了人感染H7N9禽流感病毒,為有效防控,2013年4月下旬,北京疫苗研制工作進入動物免疫原性試驗階段。假定現(xiàn)已研制出批號分別為1,2,3,4,5的五批疫苗,準備在A、B、C三種動物身上做試驗,給每種動物做實驗所選用的疫苗是從這五個批號中任選其中一個批號的疫苗.

(Ⅰ)求給三種動物注射疫苗的批號互不相同的概率;

(Ⅱ)記給A、B、C三種動物注射疫苗的批號最大數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案