【題目】定義在非零實數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).

1)求的值;

2)求證: ;

3)解不等式

【答案】解:(1)x=y=1,則f(1)="f(1)+" f(1) ∴f(1)=0

x=y=1,則f(1)=f(1)+ f(1) ∴f(1)=0

(2)y=1,則f(x)=f(x)+f(1)="f(x) " ∴f(x)=f(x)

(3)據(jù)題意可知,函數(shù)圖象大致如下:

【解析】試題分析:(1)根據(jù),令可求得.(2)根據(jù)證明.(3)由可將變形為,由(1)可知,所以等價于.根據(jù)函數(shù)的單調(diào)性可得關(guān)于的不等式.

試題解析:解:(1)令,則

,則

2)令,則

,

為定義域上的偶函數(shù).

3)據(jù)題意可知,函數(shù)圖象大致如下:

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù)k,若數(shù)列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.
(Ⅰ)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
(Ⅱ)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,討論的單調(diào)性;

(2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖多面體, 兩兩垂直,, ,

.

() 若點在線段,,求證: 平面;

()求直線與平面所成的角的正弦值;

()求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)證明:f(x)存在唯一的極大值點x0 , 且e﹣2<f(x0)<2﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y= 的定義域為A,函數(shù)y=ln(1﹣x)的定義域為B,則A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣2x+ex ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正△ABC內(nèi)接于半徑為2的圓O,點P是圓O上的一個動點,則 的取值范圍是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當(dāng)a=2時,試求函數(shù)圖線過點(1,f(1))的切線方程;
(Ⅱ)當(dāng)a=1時,若關(guān)于x的方程f(x)=x+b有唯一實數(shù)解,試求實數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案