已知函數(shù)f(x)=ex-x2+a,x∈R的圖象在點x=0處的切線為y=bx.(e≈2.71828).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當x∈R時,求證:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.
考點:利用導數(shù)研究曲線上某點切線方程,利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導數(shù)的概念及應用
分析:(Ⅰ)利用圖象在點x=0處的切線為y=bx,求出a,b,即可求函數(shù)f(x)的解析式;
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,確定函數(shù)的單調(diào)性,可得φ(x)min=φ(0)=0,即可證明:f(x)≥-x2+x;
(Ⅲ)f(x)>kx對任意的x∈(0,+∞)恒成立?
f(x)
x
>k
對任意的x∈(0,+∞)恒成立,k<g(x)min=g(1)=0,即可求實數(shù)k的取值范圍.
解答: 解:(Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知
f(0)=1+a=0
f′(0)=1=b
a=-1
b=1
,f(x)=ex-x2-1.…(4分)
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
當x∈(-∞,0)時,φ'(x)<0,φ(x)單調(diào)遞減;
當x∈(0,+∞)時,φ'(x)>0,φ(x)單調(diào)遞增.
∴φ(x)min=φ(0)=0,從而f(x)≥-x2+x.…(8分)
(Ⅲ)f(x)>kx對任意的x∈(0,+∞)恒成立?
f(x)
x
>k
對任意的x∈(0,+∞)恒成立,
g(x)=
f(x)
x
, x>0
,
g′(x)=
xf′(x)-f(x)
x2
=
x(ex-2x)-(ex-x2-1)
x2
=
(x-1)(ex-x-1)
x2

由(Ⅱ)可知當x∈(0,+∞)時,ex-x-1>0恒成立,…(10分)
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1).g(x)min=g(1)=0.
∴k<g(x)min=g(1)=e-2,∴實數(shù)k的取值范圍為(-∞,e-2).…(14分)
點評:此題主要考查了利用導數(shù)求閉區(qū)間上函數(shù)的最值問題,考查了函數(shù)的單調(diào)性,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
3
cos2ωx+sinωxcosωx+a,(ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標為
π
6

(Ⅰ)求ω的值及對稱軸方程:
(Ⅱ)如果f(x)在區(qū)間[-
π
3
,
6
]上的最小值為
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四邊形ACBE,AB交CE于D點,BC=
15
,DE=2,DC=3,EC平分∠AEB.
(1)求證:△CDB∽△CBE;
(2)求證:A、E、B、C四點共圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2
x-1

(1)證明函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(2)當x∈[2,6]時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x(x-2).
(1)求函數(shù)f(x)在R上的解析式;
(2)當a取何值時,方程f(x)=a在R上有兩個解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+1|+|x-2|;
(1)解不等式f(x)≥5;
(2)若對任意實數(shù)x,不等式|x+1|+|x-2|>ax恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
64
-
y2
36
=1的焦點為F1、F2,點P在雙曲線上,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足S6=42,a5+a7=24.
(1)求數(shù)列{an}的通項an及前n項和Sn;
(2)令bn=an-2 -an (n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=loga(x-2)+1(a>0,a≠1)的圖象恒過定點P,則P點的坐標是
 

查看答案和解析>>

同步練習冊答案