【題目】越接近高考學生焦慮程度越強,四個高三學生中大約有一個有焦慮癥,經(jīng)有關機構調查,得出距離高考周數(shù)與焦慮程度對應的正常值變化情況如下表:
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1 |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
(1)作出散點圖:
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關于x的線性回歸方程 (精確到0.01);
(3)根據(jù)經(jīng)驗,觀測值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及其以上為重度焦慮,若為中度焦慮及其以上,則要進行心理疏導,若一個學生在距高考第二周時觀測值為100,則該學生是否需要進行心理疏導?
(,
)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在
上的偶函數(shù),當
時,
.現(xiàn)已畫出函數(shù)
在
軸右側的圖象,如圖所示.
(1)畫出函數(shù)在
軸左側的圖象,根據(jù)圖象寫出函數(shù)
在
上的單調區(qū)間;
(2)求函數(shù)在
上的解析式;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知對任意平面向量,把
繞其起點沿逆時針方向旋轉
角得到向量
,叫做把點
繞點
逆時針方向旋轉
角得到點
.
(1)已知平面內點,點
.把點
繞點
沿順時針方向旋轉
后得到點
,求點
的坐標;
(2)設平面內曲線上的每一點繞坐標原點沿逆時針方向旋轉
后得到的點的軌跡是曲線
,求原來曲線
的方程,并求曲線
上的點到原點距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經(jīng)成為一種主要的消費方式.在某市,隨機調查了200名顧客購物時使用手機支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機支付的人群中隨機抽取1人,抽到青年的概率為.
(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認為“市場購物用手機支付與年齡有關”?
2×2列聯(lián)表:
青年 | 中老年 | 合計 | |
使用手機支付 | 120 | ||
不使用手機支付 | 48 | ||
合計 | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機支付”和“不使用手機支付”抽取一個容量為10的樣本,再從中隨機抽取3人,求這三人中“使用手機支付”的人數(shù)的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將參加夏令營的400名學生編號為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個容量為40的樣本,且隨機抽得的號碼為003,這400名學生分住在三個營區(qū),從001到180在第一營區(qū),從181到295在第二營區(qū),從296到400在第三營區(qū),三個營區(qū)被抽中的人數(shù)分別為( )
A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點
,離心率為
,
為坐標原點.
(1)求橢圓的標準方程;
(2)設,
,
為橢圓
上的三點,
與
交于點
,且
,當
的中點恰為點
時,判斷
的面積是否為常數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com