精英家教網 > 高中數學 > 題目詳情

(本小題滿分10分)

已知向量設函數

(1)求的最小正周期與單調遞減區(qū)間;

(2)在△ABC中分別是角A、B、C的對邊,若△ABC的面積為,求的值.

 

【答案】

(1),的單調減區(qū)間為

(2) 

【解析】

試題分析:解:(1)

   

  

的單調減區(qū)間為 

(2)由

 

   

考點:三角函數的性質,余弦定理和正弦定理的運用。

點評:解決該試題的關鍵是對于三角函數的化簡,以及根據三角函數的性質求解結論。合理的結合解三角形知識求解,屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數方程為
x=
1
2
t
y=
3
2
t+1
(t為參數),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數,求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數學 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內答,
若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數,且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數學 來源: 題型:

必做題:(本小題滿分10分,請在答題指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數.
(Ⅰ)求an
(Ⅱ)是否存在等差數列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數n都成立?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分10分)數學的美是令人驚異的!如三位數153,它滿足153=13+53+33,即這個整數等于它各位上的數字的立方的和,我們稱這樣的數為“水仙花數”.請您設計一個算法,找出大于100,小于1000的所有“水仙花數”.
(1)用自然語言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習冊答案