【題目】對年利率為的連續(xù)復(fù)利,要在年后達(dá)到本利和,則現(xiàn)在投資值為是自然對數(shù)的底數(shù).如果項(xiàng)目的投資年利率為的連續(xù)復(fù)利.

(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)

(2)一個家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項(xiàng)目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)

【答案】(1),萬元;(2)至少滿23年基金共有本利和超過一百萬元.

【解析】

1)根據(jù)投資值公式變形得出;
2)根據(jù)等比數(shù)列的求和公式列不等式求出n的值.

(1)由題意:.

當(dāng)時,本利和為萬元.

(2)由題意:.設(shè)年后共有本利和超過一百萬元,則年后:

第一年年初的投資所得的為:.

第二年年初的投資所得的為:.

以此類推:第年年初的投資所得的為:.

則滿年后,基金共有本利和:

.

由題意:

.

故至少滿23年基金共有本利和超過一百萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐PABC中,PC⊥平面ABC,PCAC=2,ABBC,DPB上一點(diǎn),且CD⊥平面PAB

(1)求證:AB⊥平面PCB

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有7個同學(xué),其中4個同學(xué)從來沒有參加過天文研究性學(xué)習(xí)活動,3個同學(xué)曾經(jīng)參加過天文研究性學(xué)習(xí)活動.

1)現(xiàn)從該小組中隨機(jī)選2個同學(xué)參加天文研究性學(xué)習(xí)活動,求恰好選到1個曾經(jīng)參加過天文研究性學(xué)習(xí)活動的同學(xué)的概率;

2)若從該小組隨機(jī)選2個同學(xué)參加天文研究性學(xué)習(xí)活動,則活動結(jié)束后,該小組有參加過天文研究性學(xué)習(xí)活動的同學(xué)個數(shù)是一個隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對轄區(qū)內(nèi),三類行業(yè)共200個單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評估,考評分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個單位,其考評分?jǐn)?shù)如下:

類行業(yè):85,82,7778,83,87

類行業(yè):76,67,80,8579,81

類行業(yè):87,8976,8675,84,9082

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個單位中,再隨機(jī)選取3個單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個單位中既有“星級”環(huán)保單位,又有“非星級”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當(dāng)?shù)谝魂P(guān)闖過后,才能進(jìn)入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機(jī)會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機(jī)會,且每次闖關(guān)互不影響.

(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;

(2)記甲闖關(guān)的次數(shù)為,求隨機(jī)變量的分布列和期望.。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種作圖工具如圖1所示.是滑槽的中點(diǎn),短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動時,帶動轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點(diǎn),所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.

)求曲線C的方程;

)設(shè)動直線與兩定直線分別交于兩點(diǎn).若直線總與曲線有且只有一個公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理是類比推理的( )

A. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則

B. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

C. 某校高二級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員.

D. 一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

(1)p是真命題,求對應(yīng)x的取值范圍;

(2)pq的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856331)

甲、乙兩家快餐店對某日7個時段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

同步練習(xí)冊答案