【題目】已知橢圓:
(
)的離心率為
,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線
與橢圓
交于
,
兩點(diǎn),點(diǎn)
在直線
的左上方.若
,且直線
,
分別與
軸交于
,
點(diǎn),求線段
的長度.
【答案】(1)(2)
【解析】試題分析: (1)由已知條件求出 的值,得出橢圓方程; (2)設(shè)直線
的方程, 聯(lián)立直線與橢圓方程,求出兩根之和,兩根之積,求出
,得到
為等腰直角三角形,求出線段
的長.
試題解析:(1)由題意知,解之,得
.
所以橢圓的方程為
;
(2)設(shè)直線,
,
將代入
中,化簡整理,得
,
,得
,
于是有,
,
,
注意到,
上式中,分子
,
從而, ,由
,可知
,
所以是等腰直角三角形,
,即為所求.
點(diǎn)睛:本題主要考查了求橢圓方程以及直線與橢圓相交時(shí)求另一線段的長,計(jì)算量比較大,屬于中檔題.解題思路:在(1)中,直接由已知條件得出;在(2)中,通過求出,而
,得出
,得到
為等腰直角三角形,再求出線段
的長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
為直角,
.沿
的中位線
,將平面
折起,使得
,得到四棱錐
.
(Ⅰ)求證: 平面
;
(Ⅱ)求三棱錐的體積;
(Ⅲ)是棱
的中點(diǎn),過
做平面
與平面
平行,設(shè)平面
截四棱錐
所得截面面積為
,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn) ,
兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,
產(chǎn)品的利潤與投資關(guān)系如圖(1)所示;
產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤和投資單位:萬元).
(1)分別將 ,
兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬元資金,并將全部投入
,
兩種產(chǎn)品的生產(chǎn).問怎樣分配這
萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓
是以
的中點(diǎn)為圓心,
為半徑的圓.
(Ⅰ)若圓的切線在
軸和
軸上截距相等,求切線方程;
(Ⅱ)若是圓
外一點(diǎn),從
向圓
引切線
,
為切點(diǎn),
為坐標(biāo)原點(diǎn),且有
,求使
最小的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)
處的切線與直線
垂直,求
的值;
(2)討論方程的實(shí)數(shù)根的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的上下兩個(gè)焦點(diǎn)分別為
,
,過點(diǎn)
與
軸垂直的直線交橢圓
于
、
兩點(diǎn),
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線
:
與
軸交于點(diǎn)
,與橢圓
交于
,
兩個(gè)不同的點(diǎn),若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時(shí)紅軍長征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長征勝利80周年知識(shí)問答,宣傳長征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng),其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個(gè)紀(jì)念品,其數(shù)據(jù)表格如下:
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺(tái)記者對乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
有興趣 | 無興趣 | 合計(jì) | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計(jì) | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過
分別作曲線
與
的切線
,且
與
關(guān)于
軸對稱,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,
.
(1)設(shè)函數(shù),若
在區(qū)間
上單調(diào),求實(shí)數(shù)
的取值范圍;
(2)求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com