精英家教網 > 高中數學 > 題目詳情
雙曲線上一點到點的距離為,那么該點到的距離為(    )
A.B.C.D.
D
,又焦點在軸上,∴焦點為,∴,∴,∴。故選。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題




 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知方程的圖形是雙曲線,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求焦距為,的雙曲線的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知方程表示焦點在軸上的雙曲線,求的范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

”是方程表示雙曲線的(      )
A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

雙曲線上的點到左焦點的距離與到左準線的距離的比是3,則m 等于 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

焦點坐標是(-2,0),(2,0),且虛軸長為2的雙曲線的方程是( 。
A.
x2
5
+y2=1
B.
y2
5
+x2=1
C.
x2
3
-y2=1
D.y2-
x2
3
=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線b2x2-a2y2=a2b2 (a>b>0)的漸近線夾角為α,離心率為e,則cos等于( )
A.eB.e2C.D.

查看答案和解析>>

同步練習冊答案