有窮數(shù)列5,8,11,…,的項(xiàng)數(shù)是(       ).

A、        B、   C、       D、

 

【答案】

D

【解析】

解:數(shù)列的公差為3,首項(xiàng)為5,則數(shù)列

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對(duì)稱數(shù)列”.
(1)設(shè){bn}是7項(xiàng)的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項(xiàng);
(2)設(shè){cn}是49項(xiàng)的“對(duì)稱數(shù)列”,其中c25,c26,…,c49是首項(xiàng)為1,公比為2的等比數(shù)列,求{cn}各項(xiàng)的和S;
(3)設(shè){dn}是100項(xiàng)的“對(duì)稱數(shù)列”,其中d51,d52,…,d100是首項(xiàng)為2,公差為3的等差數(shù)列.求{dn}前n項(xiàng)的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、如果有窮數(shù)列a1,a2,…,an(n為正整數(shù))滿足條件a1=an,a2=an-1…,an=a1,即ak=an-k+1(k=1,2 …,n ),我們稱其為“對(duì)稱數(shù)列”.設(shè){bn}是項(xiàng)數(shù)為7的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4成等差數(shù)列,且b1=2,b2+b4=16,依次寫出{bn}的每一項(xiàng)
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對(duì)稱數(shù)列”.已知數(shù)列{bn}是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11試寫出{bn}所有項(xiàng)
2,5,8,11,8,5,2
2,5,8,11,8,5,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•樂山一模)如果有窮數(shù)列a1,a2,a3,…,an(n∈N*)滿足a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…n),則稱其為“對(duì)稱數(shù)列”.
(1)設(shè){bn}是項(xiàng)數(shù)為7的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11,則數(shù)列{bn}的各項(xiàng)分別是
2,5,8,11,8,5,2
2,5,8,11,8,5,2

(2)設(shè){Cn}是項(xiàng)數(shù)為2k-1(k∈N*,k>1)的“對(duì)稱數(shù)列”,其中Ck,Ck+1,…,C2k-1是首項(xiàng)為50,公差為-4的等差數(shù)列,記{Cn}各項(xiàng)和和為S2k-1,則S2k-1的最大值為
626
626

查看答案和解析>>

同步練習(xí)冊(cè)答案