已知線段AB上有10個(gè)確定的點(diǎn)(包括端點(diǎn)A與B).現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)).如圖:在點(diǎn)A上標(biāo)1,稱(chēng)為點(diǎn)1,然后從點(diǎn)1開(kāi)始數(shù)到第二個(gè)數(shù),標(biāo)上2,稱(chēng)為點(diǎn)2,再?gòu)狞c(diǎn)2開(kāi)始數(shù)到第三個(gè)數(shù),標(biāo)上3,稱(chēng)為點(diǎn)3(標(biāo)上數(shù)n的點(diǎn)稱(chēng)為點(diǎn)n),…,這樣一直繼續(xù)下去,直到1,2,3,…,2013都被標(biāo)記到點(diǎn)上.則點(diǎn)2013上的所有標(biāo)數(shù)中,最小的是
2
2
分析:確定標(biāo)有2012的是1+2+3+…+2012=2027091號(hào),2027091除以18的余數(shù)為3,即線段的第3個(gè)點(diǎn)標(biāo)為2013,那么3+18n=1+2+3+…+k=
k(k+1)
2
,即6+36n=k(k+1),令n=0,即可得結(jié)論.
解答:解:解:記標(biāo)有1為第1號(hào),由于對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向
點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)),則標(biāo)有2的是1+2號(hào),標(biāo)有3的是1+2+3號(hào),標(biāo)有4的是1+2+3+4,…,
標(biāo)有2012的是1+2+3+…+2012=2025078號(hào).考慮為一圓周,則圓周上共18個(gè)點(diǎn),
所以2,027091除以18的余數(shù)為3,即線段的第3個(gè)點(diǎn)標(biāo)為2013,那么3+18n=1+2+3+…+k=
k(k+1)
2
,
即6+36n=k(k+1).
當(dāng)n=0時(shí),k(k+1)=6,k=2滿足題意,隨著n的增大,k也增大.
所以,標(biāo)有2012的那個(gè)點(diǎn)上標(biāo)出的最小數(shù)為2.
故答案為:2.
點(diǎn)評(píng):本題考查合情推理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)已知線段AB上有10個(gè)確定的點(diǎn)(包括端點(diǎn)A與B).現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)
(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)).
如圖:在點(diǎn)A上標(biāo)1,稱(chēng)為點(diǎn)1,然后從點(diǎn)1開(kāi)始數(shù)到第二個(gè)數(shù),標(biāo)上2,稱(chēng)為點(diǎn)2,再?gòu)狞c(diǎn)2開(kāi)始數(shù)到第三個(gè)數(shù),標(biāo)上3,稱(chēng)為點(diǎn)3(標(biāo)上數(shù)n的點(diǎn)稱(chēng)為點(diǎn)n),…,這樣一直繼續(xù)下去,直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上.則點(diǎn)2012上的所有標(biāo)記的數(shù)中,最小的是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測(cè)理科數(shù)學(xué)試卷 題型:填空題

已知線段AB上有10個(gè)確定的點(diǎn)(包括端點(diǎn)A與B). 現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù))。如圖:在點(diǎn)A上標(biāo)1,稱(chēng)為點(diǎn)1,然后從點(diǎn)1開(kāi)始數(shù)到第二個(gè)數(shù),標(biāo)上2,稱(chēng)為點(diǎn)2,再?gòu)狞c(diǎn)2開(kāi)始數(shù)到第三個(gè)數(shù),標(biāo)上3,稱(chēng)為點(diǎn)3(標(biāo)上數(shù)n的點(diǎn)稱(chēng)為點(diǎn)n),……,這樣一直繼續(xù)下去,直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上.則點(diǎn)2012上的所有標(biāo)記的數(shù)中,最小的是    

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知線段AB上有10個(gè)確定的點(diǎn)(包括端點(diǎn)A與B).現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)
(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)).
如圖:在點(diǎn)A上標(biāo)1,稱(chēng)為點(diǎn)1,然后從點(diǎn)1開(kāi)始數(shù)到第二個(gè)數(shù),標(biāo)上2,稱(chēng)為點(diǎn)2,再?gòu)狞c(diǎn)2開(kāi)始數(shù)到第三個(gè)數(shù),標(biāo)上3,稱(chēng)為點(diǎn)3(標(biāo)上數(shù)n的點(diǎn)稱(chēng)為點(diǎn)n),…,這樣一直繼續(xù)下去,直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上.則點(diǎn)2012上的所有標(biāo)記的數(shù)中,最小的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知線段AB上有10個(gè)確定的點(diǎn)(包括端點(diǎn)A與B).現(xiàn)對(duì)這些點(diǎn)進(jìn)行往返標(biāo)數(shù)
(從A→B→A→B→…進(jìn)行標(biāo)數(shù),遇到同方向點(diǎn)不夠數(shù)時(shí)就“調(diào)頭”往回?cái)?shù)).
如圖:在點(diǎn)A上標(biāo)1,稱(chēng)為點(diǎn)1,然后從點(diǎn)1開(kāi)始數(shù)到第二個(gè)數(shù),標(biāo)上2,稱(chēng)為點(diǎn)2,再?gòu)狞c(diǎn)2開(kāi)始數(shù)到第三個(gè)數(shù),標(biāo)上3,稱(chēng)為點(diǎn)3(標(biāo)上數(shù)n的點(diǎn)稱(chēng)為點(diǎn)n),…,這樣一直繼續(xù)下去,直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上.則點(diǎn)2012上的所有標(biāo)記的數(shù)中,最小的是   

查看答案和解析>>

同步練習(xí)冊(cè)答案